Advertisement

Fast 3D image reconstruction by cuboids and 3D Charlier’s moments

  • Hicham KarmouniEmail author
  • Tarik Jahid
  • Mhamed Sayyouri
  • Rachid El Alami
  • Hassan Qjidaa
Original Research Paper
  • 41 Downloads

Abstract

In this article, we propose a novel approach to accelerate the processing of 3D images by the discrete orthogonal moments of Charlier. The proposed approach is based on two fundamental notions: The first is the acceleration of the computing time of Charlier discrete orthogonal polynomials and moments in the case of the 3D image using digital filters. The second is the description of the 3D image by a set of cuboids of fixed size instead of individual voxels by decomposing the image by cuboids of small sizes to ensure numerical stability. By applying this method, the 3D Charlier moments are calculated from the cuboids instead of the whole image, as the image processing will be locally in each cuboid. This method allows us to speed up the computation time of the moments and to avoid the problem of propagation of digital errors encountered as well when using of digital filters for 3D images of large sizes. The simulation results show the effectiveness of the proposed method in terms of the computation time of the 3D moments of Charlier and in terms of quality of 3D image.

Keywords

3D Charlier moments 3D image reconstruction Digital filters 3D image cuboid representation 

Notes

References

  1. 1.
    Ghosal, S., Mehrotra, R.: Orthogonal moment operators for subpixel edge detection. Pattern Recognit., 26(2):295-306, 1993CrossRefGoogle Scholar
  2. 2.
    Hmimid, M., Sayyouri, Qjidaa, H.: Image classification using separable invariant moments of Charlier-Meixner and support vector machine. Multimed. Tools Appl., 2018, p. 1–25Google Scholar
  3. 3.
    Hmimid, M., Sayyouri, Qjidaa, H.: Image classification using a new set of separable two-dimensional discrete orthogonal invariant moments. J. Electron. Imaging 23(1), 013026 (2014)CrossRefGoogle Scholar
  4. 4.
    Tuceryan, M.: Moment-based texture segmentation. Pattern Recognit. Lett., 15(7):659-668, 1994CrossRefGoogle Scholar
  5. 5.
    Bharathi, V.S., Ganesan, L.: Orthogonal moments based texture analysis of CT liver images. Pattern Recognit. Lett., 29(13):1868-1872, 2008CrossRefGoogle Scholar
  6. 6.
    Marcos, J.V., Cristobal, G.: Texture classification using discrete Tchebichef moments. J. Opt. Soc. Am. A, 30(8):1580-1591, 2013CrossRefGoogle Scholar
  7. 7.
    Hickman, M.S.: Geometric moments and their invariants. J. Math. Imaging Vision, 44(3):223-235, 2012MathSciNetCrossRefGoogle Scholar
  8. 8.
    Honarvar, R., Paramesran, Lim, C.L.: Image reconstruction from a complete set of geometric and complex moments. Signal Process., 98:224_232, 2014Google Scholar
  9. 9.
    Hmimid, M., Sayyouri, H., Qjidaa: Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recogn. 48, 509–521 (2015)CrossRefGoogle Scholar
  10. 10.
    Martin, J.A., Santos, H.M., and J. de Lope. Orthogonal variant moments features in image analysis. Inf. Sci., 180(6): 846-860, 2010MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wu, H., Coatrieux, J.L., Shu, H.: New algorithm for constructing and computing scale invariants of 3D Tchebichef moments. Math. Probl. Eng. 2013: 8, (Article ID 813606) (2013)MathSciNetGoogle Scholar
  12. 12.
    Hosny, K.M.: Fast and low-complexity method for exact computation of 3D Legendre moments. Pattern Recognit. Lett., 32(9):1305-1314, 2011CrossRefGoogle Scholar
  13. 13.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory IT -8: 179–187 (1962)zbMATHGoogle Scholar
  14. 14.
    Hosny, M.K.: Exact and fast computation of geometric moments for gray level images. Appl. Math. Comput. 189, 1214–1222 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hosny, M.K.: Image representation using accurate orthogonal Gegenbauer moments. Pattern Recogn. Lett. 32, 79s5–7804 (2011)CrossRefGoogle Scholar
  16. 16.
    Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shu, H.Z., Zhang, H., Chen, B.J., Haigron, P., Luo, L.M.: Fast computation of Tchebichef moments for binary and gray-scale images. IEEE Trans. Image Process. 19(12), 3171–3180 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yap, P.T., Paramesran, R., Ong, S.H.: Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sayyouri, M., Hmimid, A., Qjidaa, H.: Improving the performance of image classification by Hahn moment invariants. J. Opt. Soc. Am. A 30, 2381–2394 (2013)CrossRefGoogle Scholar
  21. 21.
    Sayyouri, M., Hmimid, A., Qjidaa, H.: A fast computation of Hahn moments for binary and gray-scale images. In: 2012 IEEE International Conference on Complex Systems (ICCS), pp. 1–6 (2012)Google Scholar
  22. 22.
    Zhu, H.Q., Shu, H.Z., Liang, J., Luo, L.M., Coatrieux, J.L.: Image analysis by discrete orthogonal Racah moments. Signal Process 87(4), 687–708 (2007)CrossRefGoogle Scholar
  23. 23.
    Zhu, H., Liu, M., Shu, H., Zhang, H., Luo, L.: General form for obtaining discrete orthogonal moments. IET Image Process. 4(5), 335–352 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sayyouri, M., Hmimid, A., Qjidaa, H.: Image analysis using separable discrete moments of Charlier–Hahn. Multimed. Tools Appl. 75(1), 547–571 (2014)CrossRefGoogle Scholar
  25. 25.
    Sayyouri, M., Hmimid, A., Qjidaa, H.: A fast computation of novel set of Meixner invariant moments for image analysis. Circ. Syst. Signal Process. 2014, 1–26 (2014).  https://doi.org/10.1007/s00034-014-9881-7 CrossRefzbMATHGoogle Scholar
  26. 26.
    Spiliotis, I.M., Mertzios, B.G.: Real-time computation of two-dimensional moments on binary images using image block representation. IEEE Trans. Image Process., 7(11):1609-1615, 1998CrossRefGoogle Scholar
  27. 27.
    Papakostas, G.A., Karakasis, E.G., Koulouriotis, D.E.: Efficient and accurate computation of geometric moments on gray-scale images. Pattern Recognit., 41(6):1895-1904, 2008CrossRefGoogle Scholar
  28. 28.
    Papakostas, G.A., Koulouriotis, D.E., Karakasis, E.G.: A unified methodology for the efficient computation of discrete orthogonal image moments. Inf. Sci., 179(20):3619_3633, 2009Google Scholar
  29. 29.
    Papakostas, G.A., Karakasis, E.G., Koulouriotis, D.E.: Accurate and speedy computation of image Legendre moments for computer vision applications. Image Vision Comput., 28(3):414-423, 2010CrossRefGoogle Scholar
  30. 30.
    Hosny, M.K., Hafez, M.: An algorithm for fast computation of 3D zernike moments for volumetric images, Math. Probl. Eng., Volume 2012: 17, (Article ID 353406)Google Scholar
  31. 31.
    Hosny, M.K., Salah, A., Saleh, H.I., Sayed, M.: Fast computation of 2D and 3D legendre moments using multi-core CPUs and GPU parallel architectures. J. Real Time Image Process (2017).  https://doi.org/10.1007/s11554-017-0708-1 CrossRefGoogle Scholar
  32. 32.
    Kumar, M.F., Hassan, P., Raveendran: Learning based restoration of Gaussian blurred images using weighted geometric moments and cascaded digital filters. Appl. Soft. Comput. 63, 124–138 (2018)CrossRefGoogle Scholar
  33. 33.
    Karmouni, H., Hmimid, A., Jahid, T., Sayyouri, M., Qjidaa, H., Rezzouk, A., Fast and stable computation of the Charlier moments and their inverses using digital filters and image block representation. Circuits Syst. Signal Process.: 1–19. (2018)Google Scholar
  34. 34.
    Tarik Jahid, A., Hmimid, H., Karmouni, M., Sayyouri, H., Qjidaa, A., Rezzouk: Image analysis by Meixner moments and a digital filter. Multimed. Tools Appl. 77(15), 19811–19831 (2018)CrossRefGoogle Scholar
  35. 35.
    Nikiforov, A.F., Suslov, S.K., Uvarov, B.: Classical orthogonal polynomials of a discrete variable. Springer, New York (1991)CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Benouini, R., Batioua, I., Zenkouar, K., Najah, S.: & H. Qjidaa. Efficient 3D object classification by using direct Krawtchouk moment invariants. Multimed. Tools Appl., 1–26, 2018Google Scholar
  38. 38.
    Yap., P.T., Paramesran, R.: & S. H. Ong. Image analysis using Hahn moments. IEEE Trans. Pattern Anal. Mach. Intell., 29(11), 2007Google Scholar
  39. 39.
    Hosny, M.K.: Fast computation of accurate zernike moments. J. Real Time Image Proc. 3(1–2), 97–107 (2008)CrossRefGoogle Scholar
  40. 40.
    Camacho-Bello, J.S., Rivera-Lopez: Some computational aspects of Tchebichef moments for higher orders. Pattern Recogn. Lett. 112, 332–339 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CED-ST, STIC, Laboratory of Electronic Signals and Systems of Information LESSI, Faculty of Science Dhar El MahrezUniversity Sidi Mohamed Ben Abdellah- FezFezMorocco
  2. 2.Laboratory of Sciences of the Engineer for the EnergyNational school of applied sciences, Chouaib Doukkali UniversityEl JadidaMorocco

Personalised recommendations