Toward reliable experiments on the performance of Connected Components Labeling algorithms

  • Federico Bolelli
  • Michele Cancilla
  • Lorenzo Baraldi
  • Costantino GranaEmail author
Original Research Paper


The problem of labeling the connected components of a binary image is well defined, and several proposals have been presented in the past. Since an exact solution to the problem exists, algorithms mainly differ on their execution speed. In this paper, we propose and describe YACCLAB, Yet Another Connected Components Labeling Benchmark. Together with a rich and varied dataset, YACCLAB contains an open source platform to test new proposals and to compare them with publicly available competitors. Textual and graphical outputs are automatically generated for many kinds of tests, which analyze the methods from different perspectives. An extensive set of experiments among state-of-the-art techniques is reported and discussed.


Connected Components Labeling Benchmarking Performance Evaluation 


  1. 1.
    Agam, G., Argamon, S., Frieder, O., Grossman, D., Lewis, D.: The Complex Document Image Processing (CDIP) Test Collection Project. Illinois Institute of Technology, Chicago (2006)Google Scholar
  2. 2.
    Baltieri, D., Vezzani, R., Cucchiara, R.: 3DPeS: 3D people dataset for surveillance and forensics. In: Proceedings of the 2011 Joint ACM Workshop on Human Gesture and Behavior Understanding, ACM, pp. 59–64 (2011)Google Scholar
  3. 3.
    Bolelli, F.: Indexing of historical document images: ad hoc dewarping technique for handwritten text. In: 13th Italian Research Conference on Digital Libraries (2017)Google Scholar
  4. 4.
    Bolelli, F., Borghi, G., Grana, C.: Historical handwritten text images word spotting through sliding window hog features. In: 19th International Conference on Image Analysis and Processing (2017)Google Scholar
  5. 5.
    Bolelli, F., Borghi, G., Grana, C.: Xdocs: an application to index historical documents. In: Italian Research Conference on Digital Libraries. Springer, pp. 151–162 (2018)Google Scholar
  6. 6.
    Cabaret, L., Lacassagne, L., Etiemble, D.: Parallel light speed labeling: an efficient connected component algorithm for labeling and analysis on multi-core processors. J. Real Time Image Process (2016).
  7. 7.
    Chang, F., Chen, C.J., Lu, C.J.: A linear-time component-labeling algorithm using contour tracing technique. Comput. Vis. Image Underst. 93(2), 206–220 (2004)CrossRefGoogle Scholar
  8. 8.
    Chang, W.Y., Chiu, C.C.: An efficient scan algorithm for block-based connected component labeling. In: 22nd Mediterranean Conference of Control and Automation (MED), IEEE, pp. 1008–1013 (2014)Google Scholar
  9. 9.
    Chang, W.Y., Chiu, C.C., Yang, J.H.: Block-based connected-component labeling algorithm using binary decision trees. Sensors 15(9), 23,763–23,787 (2015)CrossRefGoogle Scholar
  10. 10.
    Di Stefano, L., Bulgarelli, A.: A simple and efficient connected components labeling algorithm. In: International Conference on Image Analysis and Processing, IEEE, pp. 322–327 (1999)Google Scholar
  11. 11.
    Dijkstra, E.W.: A Discipline of Programming/Edsger W. Dijkstra. Prentice-Hall, Englewood Cliffs (1976)Google Scholar
  12. 12.
    Dong, F., Irshad, H., Oh, E.Y., Lerwill, M.F., Brachtel, E.F., Jones, N.C., Knoblauch, N.W., Montaser-Kouhsari, L., Johnson, N.B., Rao, L.K., et al.: Computational pathology to discriminate benign from malignant intraductal proliferations of the breast. PLoS ONE 9(12), e114,885 (2014)CrossRefGoogle Scholar
  13. 13.
    Grana, C., Borghesani, D., Cucchiara, R.: Optimized block-based connected components labeling with decision trees. IEEE Trans. Image Process. 19(6), 1596–1609 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grana, C., Montangero, M., Borghesani, D.: Optimal decision trees for local image processing algorithms. Pattern Recogn. Lett. 33(16), 2302–2310 (2012)CrossRefGoogle Scholar
  15. 15.
    Grana, C., Baraldi, L., Bolelli, F.: Optimized connected components labeling with pixel prediction. In: Advanced Concepts for Intelligent Vision Systems (2016)Google Scholar
  16. 16.
    He, L., Chao, Y., Suzuki, K.: A linear-time two-scan labeling algorithm. In: International Conference on Image Processing, vol. 5, pp. 241–244 (2007)Google Scholar
  17. 17.
    He, L., Chao, Y., Suzuki, K.: A run-based two-scan labeling algorithm. IEEE Trans. Image Process. 17(5), 749–756 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    He, L., Chao, Y., Suzuki, K., Wu, K.: Fast connected-component labeling. Pattern Recogn. 42(9), 1977–1987 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    He, L., Zhao, X., Chao, Y., Suzuki, K.: Configuration-transition-based connected-component labeling. IEEE Trans. Image Process. 23(2), 943–951 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Huiskes, M.J., Lew, M.S.: The MIR Flickr retrieval evaluation. In: MIR’08: Proceedings of the 2008 ACM International Conference on Multimedia Information Retrieval. ACM, New York, NY, USA (2008)Google Scholar
  21. 21.
    Lacassagne, L., Zavidovique, B.: Light speed labeling for RISC architectures. In: ICIP, pp. 3245–3248 (2009)Google Scholar
  22. 22.
    Lacassagne, L., Zavidovique, B.: Light speed labeling: efficient connected component labeling on risc architectures. J. Real Time Image Proc. 6(2), 117–135 (2011)CrossRefGoogle Scholar
  23. 23.
    Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., Heard, J.: Building a test collection for complex document information processing. In: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, pp. 665–666 (2006)Google Scholar
  24. 24.
    LTDL: The Legacy Tobacco Document Library (LTDL). University of California, San Francisco (2007)Google Scholar
  25. 25.
    Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  26. 26.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. (TOMACS) 8(1), 3–30 (1998)CrossRefzbMATHGoogle Scholar
  27. 27.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)CrossRefGoogle Scholar
  29. 29.
    Sutheebanjard, P., Premchaiswadi, W.: Efficient scan mask techniques for connected components labeling algorithm. EURASIP J. Image Video Process. 1, 1–20 (2011)Google Scholar
  30. 30.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp. 1521–1528 (2011)Google Scholar
  32. 32.
    Wu, K., Otoo, E., Suzuki, K.: Two Strategies to Speed up Connected Component Labeling Algorithms. Tech. Rep. LBNL-59102, Lawrence Berkeley National Laboratory (2005)Google Scholar
  33. 33.
    Wu, K., Otoo, E., Suzuki, K.: Optimizing two-pass connected-component labeling algorithms. Pattern Anal. Appl. 12(2), 117–135 (2009)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhao, H., Fan, Y., Zhang, T., Sang, H.: Stripe-based connected components labelling. Electron. Lett. 46(21), 1434–1436 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Federico Bolelli
    • 1
  • Michele Cancilla
    • 1
  • Lorenzo Baraldi
    • 1
  • Costantino Grana
    • 1
    Email author
  1. 1.Dipartimento di Ingegneria “Enzo Ferrari”Università degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations