Parallel wavelet schemes for images

How to make the wavelet transform friendly to parallel architectures
  • David BarinaEmail author
  • Michal Kula
  • Pavel Zemcik
Original Research Paper


In this paper, we introduce several new schemes for calculation of discrete wavelet transforms of images. These schemes reduce the number of steps and, as a consequence, allow to reduce the number of synchronizations on parallel architectures. As an additional useful property, the proposed schemes can reduce also the number of arithmetic operations. The schemes are primarily demonstrated on CDF 5/3 and CDF 9/7 wavelets employed in JPEG 2000 image compression standard. However, the presented method is general, and it can be applied on any wavelet transform. As a result, our scheme requires only two memory barriers for 2-D CDF 5/3 transform compared to four barriers in the original separable form or three barriers in the non-separable scheme recently published. Our reasoning is supported by exhaustive experiments on high-end graphics cards.


Discrete wavelet transforms Image processing Parallel architectures 



This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic from the National Programme of Sustainability (NPU II) project IT4Innovations excellence in science—LQ1602.


  1. 1.
    Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992). doi: 10.1002/cpa.3160450502 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 247–269 (1998). doi: 10.1007/BF02476026 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989). doi: 10.1109/34.192463 CrossRefzbMATHGoogle Scholar
  4. 4.
    Matela, J.: GPU-based DWT acceleration for JPEG2000. In: Annual Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, pp. 136–143 (2009)Google Scholar
  5. 5.
    Arguello, F., Heras, D.B., Boo, M., Lamas-Rodriguez, J.: The split-and-merge method in general purpose computation on GPUs. Parallel Comput. 38(6–7), 277–288 (2012). doi: 10.1016/j.parco.2012.03.003 CrossRefGoogle Scholar
  6. 6.
    Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way. With contributions from Gabriel Peyre, 3rd edn. Academic Press, London (2009)zbMATHGoogle Scholar
  7. 7.
    Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Cambridge (1997)zbMATHGoogle Scholar
  8. 8.
    Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmonic Anal. 3(2), 186–200 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Rauber, T., Runger, G.: Parallel Programming: For Multicore and Cluster Systems. Springer, Berlin (2013). doi: 10.1007/978-3-642-37801-0
  10. 10.
    Franco, J., Bernabe, G., Fernandez, J., Ujaldon, M.: The 2D wavelet transform on emerging architectures: GPUs and multicores. J. Real-Time Image Process. 7(3), 145–152 (2011). doi: 10.1007/s11554-011-0224-7 CrossRefGoogle Scholar
  11. 11.
    Tenllado, C., Lario, R., Prieto, M., Tirado, F.: The 2D discrete wavelet transform on programmable graphics hardware. Vis. Imaging Image Process. Conf. 2004, 808–813 (2004)Google Scholar
  12. 12.
    Tenllado, C., Setoain, J., Prieto, M., Pinuel, L., Tirado, F.: Parallel implementation of the 2D discrete wavelet transform on graphics processing units: filter bank versus lifting. IEEE Trans. Parallel Distrib. Syst. 19(3), 299–310 (2008). doi: 10.1109/TPDS.2007.70716 CrossRefGoogle Scholar
  13. 13.
    Franco, J., Bernabe, G., Fernandez, J., Acacio, M.: A parallel implementation of the 2D wavelet transform using CUDA. In: 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing, pp. 111–118 (2009). doi: 10.1109/PDP.2009.40
  14. 14.
    Blazewicz, M., Ciznicki, M., Kopta, P., Kurowski, K., Lichocki, P.: Two-dimensional discrete wavelet transform on large images for hybrid computing architectures: GPU and CELL. In: Euro-Par 2011: Parallel Processing Workshops, LNCS, vol. 7155, pp. 481–490. Springer, Berlin. doi: 10.1007/978-3-642-29737-3_53 (2012)
  15. 15.
    Galiano, V., Lopez, O., Malumbres, M., Migallon, H.: Improving the discrete wavelet transform computation from multicore to GPU-based algorithms. In: Proceedings of the 11th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE), pp. 544–555 (2011)Google Scholar
  16. 16.
    Galiano, V., Lopez, O., Malumbres, M., Migallon, H.: Parallel strategies for 2D discrete wavelet transform in shared memory systems and GPUs. J. Supercomput. 64(1), 4–16 (2013). doi: 10.1007/s11227-012-0750-5 CrossRefGoogle Scholar
  17. 17.
    van der Laan, W., Roerdink, J.B.T.M., Jalba, A.: Accelerating wavelet-based video coding on graphics hardware using CUDA. In: Proceedings of 6th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 608–613 (2009). doi: 10.1109/ISPA.2009.5297658
  18. 18.
    van der Laan, W.J., Jalba, A.C., Roerdink, J.B.T.M.: Accelerating wavelet lifting on graphics hardware using CUDA. IEEE Trans. Parallel Distrib. Syst. 22(1), 132–146 (2011). doi: 10.1109/TPDS.2010.143 CrossRefGoogle Scholar
  19. 19.
    Song, C., Li, Y., Guo, J., Lei, J.: Block-based two-dimensional wavelet transform running on graphics processing unit. IET Comput. Digit. Tech. 8(5), 229–236 (2014). doi: 10.1049/iet-cdt.2013.0141 CrossRefGoogle Scholar
  20. 20.
    Iwahashi, M.: Four-band decomposition module with minimum rounding operations. Electron. Lett. 43(6), 27–28 (2007). doi: 10.1049/el:20073479 CrossRefGoogle Scholar
  21. 21.
    Iwahashi, M., Kiya, H.: A new lifting structure of non separable 2D DWT with compatibility to JPEG 2000. In: Acoustics Speech and Signal Processing (ICASSP), pp. 1306–1309 (2010). doi: 10.1109/ICASSP.2010.5495427
  22. 22.
    Iwahashi, M., Kiya, H.: Non separable two dimensional discrete wavelet transform for image signals. In: Discrete Wavelet Transforms—A Compendium of New Approaches and Recent Applications. InTech (2013). doi: 10.5772/51199
  23. 23.
    Kula, M., Barina, D., Zemcik, P.: Block-based approach to 2-D wavelet transform on GPUs. In: International Conference on Information Technology—New Generations (ITNG), pp. 643–653. Springer, Berlin (2016). doi: 10.1007/978-3-319-32467-8_56

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centre of Excellence IT4Innovations, Faculty of Information TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations