Efficient hardware implementation strategy for local normalization of fingerprint images

  • Tariq M. Khan
  • Donald G. Bailey
  • Mohammad A. U. Khan
  • Yinan Kong
Original Research Paper


Global techniques do not produce satisfying and definitive results for fingerprint image normalization due to the non-stationary nature of the image contents. Local normalization techniques are employed, which are a better alternative to deal with local image statistics. Conventional local normalization techniques involve pixelwise division by the local variance and thus have the potential to amplify unwanted noise structures, especially in low-activity background regions. To counter the background noise amplification, the research work presented here introduces a correction factor that, once multiplied with the output of the conventional normalization algorithm, will enhance only the feature region of the image while avoiding the background area entirely. In essence, its task is to provide the job of foreground segmentation. A modified local normalization has been proposed along with its efficient hardware structure. On the way to achieve real-time hardware implementation, certain important computationally efficient approximations are deployed. Test results show an improved speed for the hardware architecture while sustaining reasonable enhancement benchmarks.


Embedded image processing FPGA Biometrics 


  1. 1.
    Bailey, D.G.: Design for Embedded Image Processing on FPGAs. Wiley, London (2011)CrossRefGoogle Scholar
  2. 2.
    Bazen, A.M., Gerez, S.H.: Segmentation of Fingerprint Images. Workshop on Circuits, Systems and Signal Processing. Veldhoven, The Netherlands (2001)zbMATHGoogle Scholar
  3. 3.
    Dragut, L., Eisank, C., Strasser, T.: Local variance for multi-scale analysis in geomorphometry. Geomorphology 130, 162–172 (2011)CrossRefGoogle Scholar
  4. 4.
    Fons, F., Fons, M., Canto, E., Lopez, M.: Flexible hardware for fingerprint image processing, research in microelectronics and electronics conference. PRIME 2007, 169–172 (2007)Google Scholar
  5. 5.
    Fons, F., Fons, M., Canto, E.: Approaching fingerprint image enhancement through reconfigurable hardware accelerators. In: IEEE International Symposium on Intelligent Signal Processing, WISP (2007)Google Scholar
  6. 6.
    Gottschlich, C.: Curved-region-based ridge frequency estimation and curved Gabor filters for fingerprint image enhancement. IEEE Trans. Image Process. 21, 2220–2227 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Greeenberg, S.: Fingerprint image enhancement using filtering techniques. 15th Int. Conf. Pattern Recognit. 3, 322–325 (2000)CrossRefGoogle Scholar
  8. 8.
    Haidekker, M.: Advanced Biomedical Image Analysis. Wiley, London (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    He, J., Bao, J.: Normalization of fingerprint image using the local feature. In: International Conference on Computer Science and Service Systems, pp. 1643-1646 (2012)Google Scholar
  10. 10.
    Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement algorithm and performance evolution. IEEE Trans. Pattern Anal. Mach. Intell. 20, 777–789 (1998)CrossRefGoogle Scholar
  11. 11.
    Khan, M.A.U., Khan, T.M., Bailey, D.G., Kong, Y.: A spatial domain scar removal strategy for fingerprint image enhancement. Pattern Recognit. 60, 258–274 (2016)CrossRefGoogle Scholar
  12. 12.
    Khan, T.M., Khan, M.A.U., Kong, Y.: Fingerprint image enhancement using multi-scale DDFB based diffusion filters and modified Hong filters. Optik Int. J. Light Electron Opt. 125, 4206–4214 (2014)CrossRefGoogle Scholar
  13. 13.
    Khan, T.M., Khan, M.A.U., Kong, Y., Kittaneh, O.: Stopping criterion for linear anisotropic image diffusion: a fingerprint image enhancement case. EURASIP J. Image Video Process. 2016, 1–20 (2016)CrossRefGoogle Scholar
  14. 14.
    Kočevar, M., Kotnik, B., Chowdhury, A., Kačič, Z.: Real-time fingerprint image enhancement with a two-stage algorithm and block–local normalization. J. Real-Time Image Proc. 1–10 (2014). doi: 10.1007/s11554-014-0440-z
  15. 15.
    Lee, J.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2(2), 165–168 (1980)CrossRefGoogle Scholar
  16. 16.
    Maio, D., Maltoni, D., Capelli, R., Wayman, j. L., Jain, A. K.: FVC2004: third fingerprint verification competition. In: First International Conference on Biometric Authentication (ICBA), pp. 1–7 (2004)Google Scholar
  17. 17.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. Syst. 9, 62–66 (2011)Google Scholar
  18. 18.
    Qin, M.: A fast and low cost SIMD architecture for fingerprint image enhancement. M.S. thesis, Department of Electrical Engineering, TUDelft (2007)Google Scholar
  19. 19.
    Sepasian, M., Balachandran, W., Mares, C.: Image enhancement for fingerprint minutiae-based algorithms using CLAHE. Standard deviation analysis and sliding neighborhood. In: Proceedings of the World Congress on Engineering and Computer Science, pp. 978–988 (2008)Google Scholar
  20. 20.
    Singh, P., Garg, A.K.: Morphology based non uniform background removal for particle analysis: a comparative study. Int. J. Comput. Corp. Res. 1(3), 1–31 (2011)Google Scholar
  21. 21.
    Soille, P., Najman, L.: On Morphological Hierarchical Representations for Image Processing and Spatial Data Clustering. Lecture Notes in Computer Science 7346, 43–67 (2012)Google Scholar
  22. 22.
    Somorjeet Singh, S., Tangkeshwar Singh, Th, Mamata Devi, H., Sinam, Tejmani: Local contrast enhancement using local standard deviation. Int. J. Comput. Appl. 47, 31–35 (2012)Google Scholar
  23. 23.
    Vitabile, S., Conti, V., Lentini, G., Sorbello, F.: An Intelligent Sensor for Fingerprint Recognition. Lecture Notes in Computer Science 3824, 27–36 (2005)Google Scholar
  24. 24.
    Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31, 111–127 (1999)CrossRefGoogle Scholar
  25. 25.
    Zhang, B., Zhang, S., Zhang, J., Jing, X.: A method of the region of interest extraction based on orientation entropy. In: IEEE International Conference on Broadband Network & Multimedia Technology (IC-BNMT), pp. 664–669 (2011)Google Scholar
  26. 26.
    Zoss, R., Habegger, A., Bandi, V., Goette, J., Jacomet, M.: Comparing signal processing hardware-synthesis methods based on the Matlab tool-chain. In: 6th International Symposium on Electronic Design, Test and Applications, Queenstown, New Zealand, pp 281–286 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tariq M. Khan
    • 1
  • Donald G. Bailey
    • 2
  • Mohammad A. U. Khan
    • 3
  • Yinan Kong
    • 1
  1. 1.Department of EngineeringMacquarie UniversitySydneyAustralia
  2. 2.School of Engineering and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand
  3. 3.Biometric and Sensor LabEffat UniversityJeddahSaudi Arabia

Personalised recommendations