Journal of Real-Time Image Processing

, Volume 13, Issue 1, pp 39–54 | Cite as

Efficient DVFS for low power HEVC software decoder

  • Erwan Nogues
  • Julien Heulot
  • Glenn Herrou
  • Ladislas Robin
  • Maxime Pelcat
  • Daniel Menard
  • Erwan Raffin
  • Wassim Hamidouche
Special Issue Paper

Abstract

Low power design is a primary concern for modern battery-driven devices and video applications such as video decoding are often the most resource intensive applications of consumer electronics devices. Modern embedded processors are now proven to support video applications with software. They are also equipped with advanced features including Dynamic Voltage Frequency Scaling and Dynamic Power Management in order to reduce their power consumption. High Efficiency Video Coding (HEVC) is the latest MPEG video standard offering state-of-the-art compression rates and advanced parallel processing solutions. This paper presents a low power real-time software architecture for a HEVC decoder. Software decoding fosters short time-to-market as it relies on software designs for a general purpose processor. The proposed architecture exploits the characteristics of the multicore ARM big.LITTLE System-on-a-Chip to provide a low power design. Extensive power measurements as well as real-time metrics are provided to compare the proposed architecture with state-of-the-art.

Keywords

HEVC big.LITTLE DVFS Low power ARM 

References

  1. 1.
    Akyol, E., Van der Schaar, M.: Complexity model based proactive dynamic voltage scaling for video decoding systems. IEEE Trans. Multimedia, 1475–1492 (2007)Google Scholar
  2. 2.
    Akyol, E., Van der Schaar, M.: Compression-aware energy optimization for video decoding systems with passive power. IEEE Trans. Circuits Syst. Video Technol. 18(9), 1300–1306 (2008)CrossRefGoogle Scholar
  3. 3.
    Bang, S.-Y., Bang, K., Yoon, S., Chung, E.-Y.: Run-time adaptive workload estimation for dynamic voltage scaling. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(9), 1334–1347 (2009)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Benini, L., DeMicheli, G.: Dynamic Power Management: Design Techniques and CAD Tools. Springer, Berlin (2012)Google Scholar
  6. 6.
    Benmoussa, Y., Senn, E., Derouineau, N., Tizon, N., Boukhobza, J.: Green metadata based adaptive DVFS for energy efficient video decodings. In: Proceedings of International Workshop on Power and Timing Modeling, Optimization and Simulation PATMOSGoogle Scholar
  7. 7.
    Benmoussa, Y., Boukhobza, J., Senn, E., Hadjadj-Aoul, Y., Benazzouz, D.: A methodology for performance/energy consumption characterization and modeling of video decoding on heterogeneous soc and its applications. J. Syst. Archit. 61(1), 49–70 (2015)CrossRefGoogle Scholar
  8. 8.
    Bossen, J.F., Bross, B., Suhring, K., Flynn, D.: HEVC complexity and implementation analysis. IEEE Trans. Circuits Syst. Video Technol. 22, 1685–1696 (2012)CrossRefGoogle Scholar
  9. 9.
    Bross, B., Alvarez-Mesa, M., George, V., Chi-Ching, C., Mayer, T., Juurlink, B., Schierl, T.: HEVC real-time decoding. In: SPIE Conference on Applications of Digital Image Processing. San Diego, California (2012)Google Scholar
  10. 10.
    Chi, C.C., Alvarez-Mesa, M., Juurlink, B., Clare, G., Henry, F., Pateux, S., Schier, T.: Parallel scalability and efficiency of HEVC parallelization approaches. IEEE Trans. Circuits Syst. Video Technol. 22, 1827–1838 (2012)CrossRefGoogle Scholar
  11. 11.
    Chi, C., Alvarez-Mesa, M., Lucas, J., Juurlink, B., Schierl, T.: Parallel HEVC decoding on multi- and many-core architectures. J. Signal Process. Syst. 71(3), 247–260 (2013). doi:10.1007/s11265-012-0714-2. ISSN 1939-8018CrossRefGoogle Scholar
  12. 12.
    Chi, C.C., Alvarez-Mesa, M., Juurlink, B.: Low-power high-efficiency video decoding using general-purpose processors. ACM Trans. Archit. Code Optim. 11(4), 56 (2014)Google Scholar
  13. 13.
    Clare, G., Henry, F., Pateux, S.: Wavefront parallel processing for HEVC encoding and decoding. In: document JCTVC-F274. Torino, Italy (2011)Google Scholar
  14. 14.
    Context, objectives, use cases and requirements for green MPEG. In: ISO/IEC JTC1/SC29/WG11/N13468 (2013)Google Scholar
  15. 15.
    Embedding content information in video streams for energy-efficient video processing on mobile devices. ISO/IEC JTC1/SC29/WG11 MPEG2012/m24982, Geneva (2012)Google Scholar
  16. 16.
    FFmpeg: open source and cross-platform multimedia library. http://www.ffmpeg.org
  17. 17.
    Gutnik, V., Chandrakasan, A.P.: Embedded power supply for low-power DSP. IEEE Trans. Very Large Scale Integr. Syst. 5(4), 425–435 (1997)CrossRefGoogle Scholar
  18. 18.
    Hamidouche, W., Raulet, M., Deforges, O.: Parallel SHVC decoder: implementation and analysis. In: 2014 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2014). doi:10.1109/ICME.2014.6890300
  19. 19.
    Hansen, F., Kjaerg, G.: Complexity model based proactive dynamic voltage scaling for video decoding systems. Math. Ann. 258(3), 229–1241 (1982)MathSciNetCrossRefGoogle Scholar
  20. 20.
    High efficiency video coding. In: Rec. ITU-T H.265 and ISO/IEC 23008-2. Sapporo, JP (2013)Google Scholar
  21. 21.
    Jejurikar, R., Pereira, C., Gupta, R.: Leakage aware dynamic voltage scaling for real-time embedded systems. In: Proceedings of the 41st Annual Design Automation Conference, pp. 275–280. ACM (2004)Google Scholar
  22. 22.
    Kim, W., Shin, D., Yun, H.-S., Kim, J., Min, S.-L.: Performance comparison of dynamic voltage scaling algorithms for hard real-time systems. In: Real-Time and Embedded Technology and Applications Symposium, 2002. Proceedings. Eighth IEEE, pp. 219–228 (2002)Google Scholar
  23. 23.
    Liu, T.-M., Chang, Y.-C., Wang, C.-M., Lin, H.-M., Cheng, C.-Y., Chen, C.-C., Chiu, M.-H., Wang, S.-J., Chao, P., Hu, M.-J., et al.: Energy and area efficient hardware implementation of 4K Main-10 HEVC decoder in Ultra-HD Blu-ray player and TV systems. In: 2015 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2015)Google Scholar
  24. 24.
    Lu, Z., Lach, J., Stan, M., Skadron, K.: Reducing multimedia decode power using feedback control. In: Proceedings. 21st International Conference on Computer Design, 2003, pp. 489–496. IEEE (2003)Google Scholar
  25. 25.
    Ma, Z., Hu, H., Wang, Y.: On complexity modeling of H.264/AVC video decoding and its application for energy efficient decoding. IEEE Trans. Multimedia 13(6), 1240–1255 (2011)CrossRefGoogle Scholar
  26. 26.
    Meenderinck, C., Azevedo, A., Alvarez, M., Juurlink, B., Ramirez, A.: Parallel scalability of video decoders. J. Signal Process. Syst. 57, 173–194 (2009)CrossRefGoogle Scholar
  27. 27.
    Nogues, E., Berrada, R., Pelcat, M., Menard, D., Raffin, E.: A DVFS based HEVC decoder for energy-efficient software implementation on embedded processors. In: 2015 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2015)Google Scholar
  28. 28.
    Nogues, E., Pelcat, M., Menard, D., Mercat, A.: Energy efficient scheduling of real time signal processing applications through combined DVFS and DPM. In: 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP), pp. 622–626. IEEE (2016)Google Scholar
  29. 29.
    Ohm, J.R., Sullivan, G.J., Schwarz, H., Tan, T.K., Wiegand, T.: Comparaison of the coding efficiency of video coding standards including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22, 1858–1870 (2012)CrossRefGoogle Scholar
  30. 30.
    Open source HEVC decoder (OpenHEVC). https://github.com/OpenHEVC
  31. 31.
    Poirier, M.: In kernel switcher: a solution to support arm’s new big.little technology. In: Embedded Linux ConferenceGoogle Scholar
  32. 32.
    Raffin, E., Nogues, E., Hamidouche, W., Tomperi, S., Pelcat, M., Menard, D.: Low power HEVC software decoder for mobile devices. J. Real-Time Image Process. 1–13 (2015)Google Scholar
  33. 33.
    Rangan, K.K., Wei, G.-Y., Brooks, D.: Thread motion: fine-grained power management for multi-core systems. In: ACM SIGARCH Computer Architecture News, vol. 37, pp. 302–313. ACM (2009)Google Scholar
  34. 34.
    Samsung. Evaluation on exynos.bl processor. In: Korea Linux Forum. Linux Foundation (2012)Google Scholar
  35. 35.
    Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding standard. IEEE Trans. Circuits Syst. Video Technol. 22, 1648–1667 (2012)CrossRefGoogle Scholar
  36. 36.
    Sze, V., Budagavi, M., Sullivan, G.J.: High Efficiency Video Coding (HEVC). Springer, Berlin (2014)CrossRefGoogle Scholar
  37. 37.
    Tan, Y., Malani, P., Qiu, Q., Wu, Q.: Workload prediction and dynamic voltage scaling for MPEG decoding. In: Proceedings of the 2006 Asia and South Pacific Design Automation Conference, pp. 911–916. IEEE Press (2006)Google Scholar
  38. 38.
    Tikekar, M., Huang, C.T., Juvekar, C., Sze, V., Chandrakasan, A.P.: HEVC complexity and implementation analysis. IEEE J. Solid-State Circuits 49, 1685–1696 (2014)CrossRefGoogle Scholar
  39. 39.
    Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuit Syst. Video Technol. 13(7), 560–576 (2003)CrossRefGoogle Scholar
  40. 40.
    Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 374. IEEE Computer Society (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Erwan Nogues
    • 1
  • Julien Heulot
    • 1
  • Glenn Herrou
    • 1
  • Ladislas Robin
    • 1
  • Maxime Pelcat
    • 1
    • 2
  • Daniel Menard
    • 1
  • Erwan Raffin
    • 1
  • Wassim Hamidouche
    • 1
  1. 1.IETR, UMR CNRS 6164, UEBINSA RennesRennesFrance
  2. 2.Institut Pascal, UMR CNRS 6602Campus Universitaire des CézeauxAubièreFrance

Personalised recommendations