Journal of Real-Time Image Processing

, Volume 13, Issue 1, pp 71–83 | Cite as

Real-time scalable hardware architecture for 3D-HEVC bipartition modes

  • Gustavo SanchezEmail author
  • César Marcon
  • Luciano Agostini
Special Issue Paper


This article presents a real-time scalable hardware architecture for the bipartition modes of 3D high-efficiency video coding (3D-HEVC) standard, which includes the depth modeling modes 1 (DMM-1) and 4 (DMM-4). A simplification of the DMM-1 algorithm was done, removing the refinement step. This simplification causes a small BD-rate increase (0.09 %) with the advantage of better using our hardware resources, reducing the necessary memory required for storing all DMM-1 wedgelet patterns by 30 %. The scalable architecture can be configured to support all the different block sizes supported by the 3D-HEVC and also to reach different throughputs, according to the application requirements. Then, the proposed solution can be efficiently used for several encoding scenarios and many different applications. Synthesis results considering a test case show that the designed architecture is capable of processing HD 1080p videos in real time, but with other configurations, higher resolutions are also possible to be processed.


3D-HEVC Bipartition modes Scalable architecture Hardware design 


  1. 1.
    JCT-3V., access in Ago. 2015
  2. 2.
    Sullivan, G., Ohm, J., Han, W., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. Transactions on circuits and systems for video technology 22(12), 1649–1668 (2012)CrossRefGoogle Scholar
  3. 3.
    Liu, Z., Qiao, Y., Karunakar, A., Lee, B., Fallon, E., Zhang, C., Zhang, S.: H.264/MVC interleaving for real-time multiview video streaming. J. Real-Time Image Proc. 10(3), 501–511 (2015)CrossRefGoogle Scholar
  4. 4.
    Vetro, A., Wiegand, T., Sullivan, G.: Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard. Proc. IEEE 99(4), 626–642 (2011)CrossRefGoogle Scholar
  5. 5.
    Zhang, L., Chen, Y. Karczewicz, M.: Disparity vector based advanced inter-view prediction in 3D-HEVC. IEEE international symposium on circuits and systems (ISCAS), pp. 1632–1635 (2013)Google Scholar
  6. 6.
    Kang, J., Chen, Y., Zhang, L., Karczewicz, M.: Low complexity neighboring block based disparity vector derivation in 3D-HEVC. IEEE international symposium on circuits and systems (ISCAS), pp. 1921–1924 (2014)Google Scholar
  7. 7.
    Li, X., Zhang, L., Chen, Y.: Advanced residual prediction in 3D-HEVC. IEEE international conference on image processing (ICIP), pp. 1747–1751 (2013)Google Scholar
  8. 8.
    Liu, H., Jung, J., Sung, J., Jia, J., Yea, S.: 3D-CE2.h: results of illumination compensation for inter-view prediction. Joint Collaborative Team on 3D Video Coding Extension Development (JCT-3V). Doc. JCT3V-B0045, Shanghai (2012)Google Scholar
  9. 9.
    Kauff, P., Atzpadin, N., Fehn, C., Muller, M., Schreer, O., Smolic, A., Tanger, R.: Depth map creation and image-based rendering for advanced 3DTV services providing interoperability and scalability. Image Commun. 22(2), 217–234 (2007)Google Scholar
  10. 10.
    Pan, Z., Zhang, Y., Kwong, S.: Fast mode decision based on texture-depth correlation and motion prediction for multiview depth video coding. J. Real-Time Image Process. 11(1), 27–36 (2013)CrossRefGoogle Scholar
  11. 11.
    Zhao, Y., Zhu, C., Chen, Z., Tian, D., Yu, L.: Boundary artifact reduction in view synthesis of 3D video: from perspective of texture-depth alignment. IEEE Trans. Broadcast. 57(2), 510–522 (2011)CrossRefGoogle Scholar
  12. 12.
    Fehn, C.: Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV. Stereosc. Disp. Virtual Real. Syst. (SPIE) 5291, 93–104 (2004)Google Scholar
  13. 13.
    Smolic, A., Muller, K., Dix, K., Merkle, P., Kauff, P., Wiegand, T.: Intermediate view interpolation based on multiview video plus depth for advanced 3D video systems. IEEE international conference on image processing (ICIP), pp. 2448–2451 (2008)Google Scholar
  14. 14.
    Vosters, L., Varekamp, C., Haan, G. Overview of efficient high-quality state-of-the-art depth enhancement methods by thorough design space exploration. J. Real-Time Image Process., pp. 1–21 (2015)Google Scholar
  15. 15.
    Jager, F., Wien, M., Kosse, P.: Model-based intra coding for depth maps in 3D video using a depth lookup table. 3DTV-conference: the true vision-capture, transmission and display of 3D video (3DTV-CON), pp. 1–4 (2012)Google Scholar
  16. 16.
    Shao, F., Lin, W., Jiang, G., Yu, M., Dai, Q.: Depth map coding for view synthesis based on distortion analyses. J. Emerg. Sel. Top. circuits Syst 4(1), 106–117 (2014)CrossRefGoogle Scholar
  17. 17.
    Muller, K., Schwarz, H., Marpe, D., Bartnik, C., Bosse, S., Brust, H., Hinz, T., Lakshman, H., Merkle, P., Rhee, F., Tech, G., Winken, M., Wiegand, T.: 3D high-efficiency video coding for multi-view video and depth data. IEEE Trans. Image Process. 22(9), 3366–3378 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tech, G., Chen, Y., Muller, K., Ohm, J., Vetro, A., Wang, Y.: Overview of the multiview and 3D extensions of high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol.(TCSVT) 26(1), 35–49 (2016)CrossRefGoogle Scholar
  19. 19.
    Shen, L., Zhang, Z., An, P.: Fast CU size decision and mode decision algorithm for HEVC intra coding. IEEE Trans. Consum. Electron. 59(1), 207–213 (2013)CrossRefGoogle Scholar
  20. 20.
    Shen, L., Liu, Z., Zhang, X., Zhao, W., Zhang, Z.: An effective CU size decision method for HEVC encoders. IEEE Trans. Multimed. 15(2), 465–470 (2013)CrossRefGoogle Scholar
  21. 21.
    Sanchez, G., Saldanha, M., Balota, G., Zatt, B., Porto, M., Agostini, L.: Complexity reduction for 3D-HEVC depth maps intra-frame prediction using simplified edge detector algorithm. IEEE international conference on image processing (ICIP), pp. 3209–3213 (2014)Google Scholar
  22. 22.
    Lei, J., Li, S., Zhu, C., Sun, M., Hou, C.: Depth coding based on depth-texture motion and structure similarities. IEEE Trans. Circuits Syst. Video Technol. 25(2), 275–286 (2015)CrossRefGoogle Scholar
  23. 23.
    Shen, L., An, P., Zhang, Z., Hu, Q., Chen, Z.: A 3D-HEVC Fast Mode Decision Algorithm for Real-Time Applications. ACM Trans. Multimed. Comput., Commun. Appl. (TOMM) 11(3), 34:1–34:23 (2015)Google Scholar
  24. 24.
    Sanchez, G., Zatt, B., Porto, M., Agostini, L.: A real-time 5-views HD 1080p architecture for 3D-HEVC depth modeling mode 4. Symposium on integrated circuits and systems (SBCCI), pp. 1–6 (2014)Google Scholar
  25. 25.
    Chen, Y., Tech, G., Wegner, K., Yea, S.: Test model 10 of 3D-HEVC and MV-HEVC. ISO/IEC JTC1/SC29/WG11, Strasbourg (2014)Google Scholar
  26. 26.
    Gu, Z., Zheng, J., Ling, N., Zhang, P.: Fast intra prediction mode selection for intra depth map coding. ISO/IEC JTC1/SC29/WG11, Vienna (2013)Google Scholar
  27. 27.
    Merkle, P., Bartnik, C., Muller, K., Marpe, D., Wiegand, T.: 3D video: depth coding based on inter-component prediction of block partitions. Picture coding symposium (PCS), pp. 149–152 (2012)Google Scholar
  28. 28.
    Merkle, P., Muller, K., Marpe, D., Wiegand, T.: Depth intra coding for 3D video based on geometric primitives. IEEE Trans. Circuits Syst. Video Technol. 26(3), 570–582 (2015)CrossRefGoogle Scholar
  29. 29.
    Zhao, L., Zhang, L., Ma, S., Zhao, D.: Fast mode decision algorithm for intra prediction in HEVC. IEEE visual communications and image processing (VCIP), pp. 1–4 (2011)Google Scholar
  30. 30.
    Cho, S., Kim, M.: Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra coding. IEEE Trans. Circuits Syst. Video Technol. 23(9), 1555–1564 (2013)CrossRefGoogle Scholar
  31. 31.
    Zou, F., Tian, D., Vetro, A., Sun, H., Au, O.C., Shimizu, S.: View synthesis prediction in the 3-D video coding extensions of AVC and HEVC. IEEE Trans. Circuits Syst. Video Technol. 24(10), 1696–1708 (2014)CrossRefGoogle Scholar
  32. 32.
    Rusanovskyy, D., Muller, K., Vetro, A.: Common test conditions of 3DV core experiments. ISO/IEC JTC1/SC29/WG11 MPEG2011/N12745, Geneva (2013)Google Scholar
  33. 33.
    Bjontegaard, G.: Calculation of average PSNR differences between RD curves. ITU-T SC16/SG16 VCEG-m33, Austin (2001)Google Scholar
  34. 34.
    Shuying, M, Wang, Y., Zhu, C., Lin, Y., Zheng, J.: Reducing wedgelet lookup table size with down-sampling for depth map coding in 3D-HEVC. IEEE international workshop on multimedia signal processing (MMSP), pp. 1–5 (2015)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gustavo Sanchez
    • 1
    Email author
  • César Marcon
    • 1
  • Luciano Agostini
    • 2
  1. 1.PPGCC – PUCRSPorto AlegreBrazil
  2. 2.GACI - PPGC – UFPELPelotasBrazil

Personalised recommendations