Efficient tree construction for multiscale image representation and processing

  • Jiří Havel
  • François Merciol
  • Sébastien Lefèvre
Original Research Paper

Abstract

With the continuous growth of sensor performances, image analysis and processing algorithms have to cope with larger and larger data volumes. Besides, the informative components of an image might not be the pixels themselves, but rather the objects they belong to. This has led to a wide range of successful multiscale techniques in image analysis and computer vision. Hierarchical representations are thus of first importance, and require efficient algorithms to be computed in order to address real-life applications. Among these hierarchical models, we focus on morphological trees (e.g., min/max-tree, tree of shape, binary partition tree, α-tree) that come with interesting properties and already led to appropriate techniques for image processing and analysis, with a growing interest from the image processing community. More precisely, we build upon two recent algorithms for efficient α-tree computation and introduce several improvements to achieve higher performance. We also discuss the impact of the data structure underlying the tree representation, and provide for the sake of illustration several applications where efficient multiscale image representation leads to fast but accurate techniques, e.g., in remote sensing image analysis or video segmentation.

Keywords

Multiscale representation Connected ooperators Alpha-tree Parallelization Mapreduce 

References

  1. 1.
    Alonso-Gonzalez, A., Valero, S., Chanussot, J., Lopez-Martinez, C., Salembier, P.: Processing multidimensional sar and hyperspectral images with binary partition tree. Proc. IEEE 101(3), 723–747 (2013)CrossRefGoogle Scholar
  2. 2.
    Bai, X., Wang, J., Simons, D., Sapiro, G.: Video snapcut: robust video object cutout using localized classifiers. In: Proceedings of the SIGGRAPH (2009)Google Scholar
  3. 3.
    Bosilj, P., Lefèvre, S., Kijak, E.: Hierarchical image representation simplification driven by region complexity. In: International Conference on Image Analysis and Processing, pp. 562–571. (2013)Google Scholar
  4. 4.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)CrossRefGoogle Scholar
  5. 5.
    Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: Proceedings of the ICCV, pp. 105–112 (2001)Google Scholar
  6. 6.
    Brunner, D., Soille, P.: Iterative area filtering of multichannel images. Image Vis. Comput. 25(8), 1352–1364 (2007)CrossRefGoogle Scholar
  7. 7.
    Carlinet, E., Géraud, T.: A comparison of many max-tree computation algorithms. In: Mathematical Morphology and Its Applications to Signal and Image Processing, pp. 73–85. Springer (2013)Google Scholar
  8. 8.
    Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Process. 23(9), 3885–3895 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. In: International Symposium on Mathematical, Morphology, pp. 135–146 (2013)Google Scholar
  10. 10.
    Cramer, M.: The dgpf test on digital aerial camera evaluation—overview and test design. Photogrammetrie Fernerkundung Geoinf. 2, 73–82 (2010)CrossRefGoogle Scholar
  11. 11.
    Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph based video segmentation. IEEE CVPR (2010)Google Scholar
  12. 12.
    Havel, J., Merciol, F., Lefèvre, S.: Efficient schemes for computing \(\alpha\)-tree representations. In: International Syposium on Mathematical, Morphology, pp. 111–122 (2013)Google Scholar
  13. 13.
    Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometry consistency for large scale image search. In: Proceedings of the 10th European conference on Computer vision (2008)Google Scholar
  14. 14.
    Lee, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: ICCV (2011)Google Scholar
  15. 15.
    Lefèvre, S., Chapel, L., Merciol, F.: Hyperspectral image classification from multiscale description with constrained connectivity and metric learning. In: 6th International Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (2014)Google Scholar
  16. 16.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vo. 2, pp. 416-425. Vancouver (2001)Google Scholar
  17. 17.
    Matas, P., Dokladalova, E., Akil, M., Georgiev, V., Poupa, M.: Parallel hardware implementation of connected component tree computation. In: 2010 International Conference on Field Programmable Logic and Applications (FPL), pp. 64 –69 (2010)Google Scholar
  18. 18.
    Merciol, F., Chapel, L., Lefèvre, S.: Hyperspectral image representation through \(\alpha\)-trees. In: ESA-EUSC-JRC Conference on Image Information Mining, pp. 37–40 (2014)Google Scholar
  19. 19.
    Merciol, F., Lefèvre, S.: Fast image and video segmentation based on \(\alpha\)-tree multiscale representation. In: International Conference on Signal Image Technology and Internet Based Systems, pp. 336–342. Naples (2012)Google Scholar
  20. 20.
    Monasse, P.: Contrast invariant registration of images. Proc. Int. Conf. Acoust. Speech Signal Process. 6, 3221–3224 (1999)Google Scholar
  21. 21.
    Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9(5), 860–872 (2000)CrossRefGoogle Scholar
  22. 22.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Process. 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  23. 23.
    Najman, L., Cousty, J., Perret, B.: Playing with kruskal: algorithms for morphological trees in edgeweightted graphs. In: International Syposium on Mathematical Morphology, pp. 135-146 (2013)Google Scholar
  24. 24.
    Nister, D., Stewenius, H.: Linear time maximally stable extremal regions. In: ECCV, pp. 183–196 (2008)Google Scholar
  25. 25.
    Noma, A., Graciano, A., Cesar Jr., R., Consularo, L., Bloch, I.: Interactive image segmentation by matching attributed relational graphs. Pattern Recogn. 45, 1159–1179 (2012)CrossRefGoogle Scholar
  26. 26.
    Ouzounis, G., Gueguen, L.: Interactive collection of training samples from the max-tree structure. In: IEEE International Conference on Image Processing, pp. 1449–1452 (2011)Google Scholar
  27. 27.
    Ouzounis, G., Syrris, V., Gueguen, L., Soille, P.: The switchboard platform for interactive image information mining. In: Soille, P., Iapaolo, M., Marchetti, P.G., Datcu, M. (eds.) Proceedings of 8th Conference on Image Information Mining, pp. 26–30. ESA-EUSC-JRC, Munich (2012)Google Scholar
  28. 28.
    Ouzounis, G., Wilkinson, M.: Mask-based second-generation connectivity and attribute filters. IEEE Trans. Pattern Anal. Mach. Intel. 29(6), 990–1004 (2007)CrossRefGoogle Scholar
  29. 29.
    Ouzounis, G.K., Soille, P.: Pattern spectra from partition pyramids and hierarchies. In: International Symposium on Mathematical Morphology, pp. 108–119, Verbania-Intra (2011)Google Scholar
  30. 30.
    Passat, N., Naegel, B.: Selection of relevant nodes from component-trees in linear time. In: IAPR International Conference on Discrete Geometry for Computer Imagery, pp. 453–464 (2011)Google Scholar
  31. 31.
    Passat, N., Naegel, N., Rousseau, F., Koob, M., Dietemann, J.L.: Interactive segmentation based on component-trees. Pattern Recogn. 44(10–11), 2539–2554 (2011)CrossRefMATHGoogle Scholar
  32. 32.
    Poullot, S., Satoh, S.: Vabcut: a video extension of grabcut for unsupervised video foreground object segmentation. In: VISAPP (2014)Google Scholar
  33. 33.
    Price, B., Morse, B., Cohen, S.: Livecut: Learning-based interactive video segmentation by evaluation of multiple propagated cues. In: IEEE International Conference on Computer Vision (2009)Google Scholar
  34. 34.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Trans. Image Process. 9(4), 561–576 (2000)CrossRefGoogle Scholar
  35. 35.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)CrossRefGoogle Scholar
  36. 36.
    Serra, J.: Anamorphoses and function lattices. In: Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing, pp. 483–523. Marcel Dekker, New York (1993)Google Scholar
  37. 37.
    Serra, J.: The “false colour” problem. In: International Symposium on Mathematical Morphology, pp. 13–23. Groningen (2009)Google Scholar
  38. 38.
    Serra, J., Kiran, B.: Optima on hierarchies of partitions. In: International Symposium on Mathematical, Morphology, pp. 147–158 (2013)Google Scholar
  39. 39.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  40. 40.
    Soille, P., Grazzini, J.: Constrained connectivity and transition regions. In: International Symposium on Mathematical Morphology, pp. 59–69. Groningen (2009)Google Scholar
  41. 41.
    Song, Y., Zhang, A.: Analyzing scenery images by monotonic tree. ACM Multimed. Syst. 8(6), 495–511 (2003)CrossRefGoogle Scholar
  42. 42.
    Crozet, S., Géraud, T., Carlinet, E., Najman, L.: A quasi-linear algorithm to compute the tree of shapes of nd images. In: Mathematical Morphology and Its Applications to Signal and Image Processing, pp. 98–110. Springer (2013)Google Scholar
  43. 43.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22, 215–225 (1975)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Tsai, D., Flagg, M., Rehg, J.M.: Motion coherent tracking with multi-label mrf optimization. British Machine Vision Conference (2010)Google Scholar
  45. 45.
    Valero, S., Salembier, P., Chanussot, J.: Hyperspectral image representation and processing with binary partition trees. IEEE Trans. Image Process. 22(4), 1430–1443 (2013)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Vilaplana, V., Marques, F., Salembier, P.: Binary partition trees for object detection. IEEE Trans. Image Process. 17(11), 2201–2216 (2008)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wang, J., Bhat, P., Colburn, R.A., Agrawala, M., Cohen, M.F.: Interactive video cutout. ACM Trans. Gr. 24(3), 585–594 (2005)CrossRefGoogle Scholar
  48. 48.
    Wang, T., Han, B., Collomosse, J.: Touchcut: fast image and video segmentation using single-touch interaction. Comput. Vis. Image Underst. 120, 14–30 (2014)CrossRefGoogle Scholar
  49. 49.
    Weber, J., Lefèvre, S., Gançarski, P.: Interactive video segmentation based on quasi-flat zones. In: International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 265–270. Dubrovnik (2011)Google Scholar
  50. 50.
    Michael, H.F., Wilkinson, H.G., Wim, H.H., Jan-Eppo, J., Arnold, M.: Concurrent computation of attribute filters on shared memory parallel machines. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1800–1813 (2008)CrossRefGoogle Scholar
  51. 51.
    Xu, C., Corso, J.J.: Evaluation of super-voxel methods for early video processing. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jiří Havel
    • 1
  • François Merciol
    • 2
  • Sébastien Lefèvre
    • 2
  1. 1.Brno University of TechnologyBrnoCzech Republic
  2. 2.Université de Bretagne-Sud, IRISAVannesFrance

Personalised recommendations