Journal of Real-Time Image Processing

, Volume 13, Issue 1, pp 5–24 | Cite as

Complexity control of HEVC encoders targeting real-time constraints

  • Mateus Grellert
  • Bruno Zatt
  • Muhammad Shafique
  • Sergio Bampi
  • Jörg Henkel
Special Issue Paper

Abstract

High Efficiency Video Coding (HEVC) encoders impose several challenges in computing constrained embedded applications, especially under real-time throughput constraints. This paper proposes an adaptive complexity control scheme (CCS) that dynamically adjusts the encoder to the varying computing capabilities of the hardware platform. To design an efficient scheme, an extensive complexity analysis of key HEVC encoding parameters is herein presented. For this analysis, we developed a parameterized complexity model called “arithmetic complexity,” which can be widely applied to any computing platform. Our results demonstrate that the proposed scheme provides time savings ranging from 10 up to 90 % with an average error (between target and effective complexity) of 1.2 %. Our adaptability and control performance analysis show that the scheme rapidly adapts to dynamic set-point adjustments. Compared to state of the art, our complexity control achieves more accurate results and extra features (such as dynamic set-point adjustment) at the cost of minor losses in coding efficiency.

Keywords

Complexity control Complexity analysis Embedded systems HEVC Video coding 

References

  1. 1.
    CISCO: Cisco Visual Networking Index: Forecast and Methodology, [Online]. www.cisco.com/ (2012). Accessed 19 June 2012
  2. 2.
    ITU-T: ITU-T Recommendation H.265: High Efficiency Video Coding (2013)Google Scholar
  3. 3.
    Grois, D., Marpe, D., Mulayoff, A., Itzhaky, B., Hadar, O.: Performance comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders. In: Picture Coding Symposium (PCS), San Jose (2013)Google Scholar
  4. 4.
    Bjontegaard, G.: Calculation of average PSNR differences between RD-curves, Technical Report VCEG-M33, ITU-T SG16/Q6, Austin, TX, USA (2001)Google Scholar
  5. 5.
    McCann, K., Bross, B., Han, W.J., Kim, I.K., Sugimoto, K., Sullivan, G.J.: High efficiency video coding (HEVC) test model 10 (HM 10) encoder description, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 12th Meeting, Geneva (2013)Google Scholar
  6. 6.
    Vanne, J., Viitanen, M., Hamalainen, T.D., Hallapuro, A.: Comparative rate-distortion-complexity analysis of HEVC and AVC video codecs. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1885–1898 (2012)CrossRefGoogle Scholar
  7. 7.
    Correa, G., Assunção, P., Agostini, L., da Silva Cruz, L.A.: Performance and computational complexity assessment of high-efficiency video encoders. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1899–1909 (2012)CrossRefGoogle Scholar
  8. 8.
    Jianfeng, R., Kehternavaz, N.: Fast adaptive termination mode selection for H.264 scalable video coding. J. Real-Time Image Proc. 4(1), 13–21 (2009)CrossRefGoogle Scholar
  9. 9.
    Choi, K., Park, S.-H., Jang, E.: Coding tree pruning based CU early termination, Torino (2011)Google Scholar
  10. 10.
    Kim, J., Yang, J., Won, K., Jeon, B.: Early determination of mode decision for HEVC. In: Picture Coding Symposium (PCS), Krakow (2012)Google Scholar
  11. 11.
    Cassa, M.B. Naccari, M., Pereira, F.: Fast rate distortion optimization for the emerging HEVC standard. In: Picture Coding Symposium (PCS), Krakow (2012)Google Scholar
  12. 12.
    Shen, X., Yu, L., Chen, J.: Fast coding unit size selection for HEVC based on Bayesian decision rule. In: Picture Coding Symposium (PCS), Krakow (2012)Google Scholar
  13. 13.
    Grecos, C., Yang, M.: Fast mode prediction for the Baseline and main profiles in the H.264 video coding standard. IEEE Trans. Multimed. 8(6), 1125–1134 (2006)CrossRefGoogle Scholar
  14. 14.
    Sung, Y.-H., Wang, J.-C.: Fast mode decision for H.264/AVC based on rate-distortion clustering. IEEE Trans. Multimed. 14(3), 693–702 (2012)CrossRefGoogle Scholar
  15. 15.
    Ou, Y.-F., Ma, Z., Liu, T., Wang, Y.: Perceptual quality assessment of video considering both frame rate and quantization artifacts. IEEE Trans. Circuits Syst. Video Technol. 21(3), 286–298 (2011)CrossRefGoogle Scholar
  16. 16.
    Jiménez-Moreno, A., Martínez-Enríquez, E., Díaz-de-María, F.: Mode decision-based algorithm for complexity control in H.264/AVC. IEEE Trans. Multimed. 15(5), 1094–1109 (2013)CrossRefGoogle Scholar
  17. 17.
    Huijibers, E.A.M., Ozelebi, T., Bril, R.J.: Complexity scalable motion estimation control for H.264/AVC. 2011 IEEE International Conference on Consumer Electronics (ICCE), pp. 49–50, (2011)Google Scholar
  18. 18.
    Corrêa, G., Assunção, P., da Silva Cruz, L.A., Agostini, L.: Adaptive coding tree for complexity control of high efficiency video encoders. In: Picture Coding Symposium (PCS), Krakow (2012)Google Scholar
  19. 19.
    Correa, G., Assuncao, P., Agostini, L., da Silva Cruz, L.A.: Complexity scalability for real-time HEVC encoders. J. Real-Time Image Process. 1(1), 1–16 (2014)Google Scholar
  20. 20.
    Zhao, T., Wang, Z., Kwong, S.: Flexible mode selection and complexity allocation in high efficiency video coding. IEEE J. Select. Top. Signal Process. 7(6), 1135–1144 (2013)CrossRefGoogle Scholar
  21. 21.
    Kannangara, C.S.: Complexity Management of H.264/AVC video compression. [Online]. https://openair.rgu.ac.uk/bitstream/10059/643/1/Kannangara%20PhD.pdf (2006). Accessed 2013
  22. 22.
    Kannangara, C.S., Richardson, I.E., Bystrom, M., Zhao, Y.: Complexity control of H.264/AVC based on mode-conditional cost probability distributions. IEEE Trans. Multimed. 11(3), 433–442 (2009)CrossRefGoogle Scholar
  23. 23.
    Binkert, N.: The gem5 simulator. ACM SIGARCH Computer Architecture, pp. 1–7, (2011)Google Scholar
  24. 24.
    Paoloni, G.: How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures, Intel Corporation (2010)Google Scholar
  25. 25.
    Nalluri, P., Alves, L., Navarro, A.: A novel SAD architecture for variable block size motion estimation in HEVC video coding. In: International Symposium on System on Chip (SoC) (2013)Google Scholar
  26. 26.
    Ahmed, A., Shahid, M.U., Rehman, A.: N-point DCT VLSI architecture for emerging HEVC standard. Hindawi: VLSI Design 2012, 13 (2012)Google Scholar
  27. 27.
    Diniz, C.M., Shafique, M., Bampi, S., Henkel, J.: High-throughput interpolation hardware architecture with coarse-grained reconfigurable datapaths for HEVC. In: International Conference on Image Processing, Melbourne (2013)Google Scholar
  28. 28.
    Bossen, F.: Common test conditions and software reference configurations. Geneva (2011)Google Scholar
  29. 29.
    Astrom, K.J., Hagglund, T.: PID Controllers: Theory, Design and Tuning, 2 ed., ISA: The Instrumentation, Systems, and Automation Society (1995)Google Scholar
  30. 30.
    Grellert, M., Shafique, M., Khan, M.U.K., Agostini, L., Mattos, J.C.B., Henkel, J.: An adaptive workload management scheme for Hevc encoding. In: International Conference on Image Processing (2013)Google Scholar
  31. 31.
    Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. J. Dyn. Syst. Meas. Control 115(2B), 220–222 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mateus Grellert
    • 1
  • Bruno Zatt
    • 2
  • Muhammad Shafique
    • 3
  • Sergio Bampi
    • 1
  • Jörg Henkel
    • 3
  1. 1.PPGC, Federal University of Rio Grande do Sul, UFRGSPorto AlegreBrazil
  2. 2.PPGC, Federal University of Pelotas, UFPelPelotasBrazil
  3. 3.Chair of Embedded Systems, CESKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations