Advertisement

Journal of Real-Time Image Processing

, Volume 14, Issue 4, pp 793–802 | Cite as

Fast and accurate circle tracking using active contour models

  • Carmelo Cuenca
  • Esther González
  • Agustín Trujillo
  • Julio Esclarín
  • Luis Mazorra
  • Luis AlvarezEmail author
  • Juan Antonio Martínez-Mera
  • Pablo G. Tahoces
  • José M. Carreira
Original Research Paper

Abstract

In this paper, we deal with the problem of circle tracking across an image sequence. We propose an active contour model based on a new energy. The center and radius of the circle is optimized in each frame by looking for local minima of such energy. The energy estimation does not require edge extraction, it uses the image convolution with a Gaussian kernel and its gradient which is computed using a GPU–CUDA implementation. We propose a Newton–Raphson type algorithm to estimate a local minimum of the energy. The combination of an active contour model which does not require edge detection and a GPU–CUDA implementation provides a fast and accurate method for circle tracking. We present some experimental results on synthetic data, on real images, and on medical images in the context of aorta vessel segmentation in computed tomography (CT) images.

Keywords

Circle Tracking Active Contour Models snakes GPU–CUDA 

Supplementary material

Supplementary material 1 (MPG 6612 kb)

Supplementary material 1 ((MPG 6612 kb)

Supplementary material 1 ((MPG 7516 kb)

Supplementary material 1 ((MPG 9196 kb)

References

  1. 1.
    ACR Foundation: Acr appropriateness criteria (2014). https://acsearch.acr.org/list
  2. 2.
    Alemán-Flores, M., Alvarez, L., Caselles, V.: Texture-oriented anisotropic filtering and geodesic active contours in breast tumor ultrasound segmentation. J. Math. Imaging Vis. 28(1), 81–97 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alvarez, L., Baumela, L., Henriquez, P., Marquez-Neila, P.: Morphological snakes. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 2197–2202 (2010)Google Scholar
  4. 4.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Springer Publishing Company Incorporated, New York (2010)zbMATHGoogle Scholar
  5. 5.
    Bascle, B., Deriche, R.: Features extraction using parametric snakes. In: Pattern Recognition, 1992. Vol. III. Conference C: Image, Speech and Signal Analysis, Proceedings., 11th IAPR International Conference on, pp. 659–662. IEEE (1992)Google Scholar
  6. 6.
    Brox, T., Kim, Y.J., Weickert, J., Feiden, W.: Fully-automated analysis of muscle fiber images with combined region and edge-based active contours. In: Handels, H., Ehrhardt, J., Horsch, A., Meinzer, H.P., Tolxdorff, T. (eds.) Bildverarbeitung fr die Medizin 2006, Informatik aktuell, pp. 86–90. Springer, Berlin (2006)CrossRefGoogle Scholar
  7. 7.
    Brox, T., Rousson, M., Deriche, R., Weickert, J.: Colour, texture, and motion in level set based segmentation and tracking. Image Vis. Comput. 28(3), 376–390 (2010)CrossRefGoogle Scholar
  8. 8.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chan, T.F., Vese, L.A.: Active contours without edges. Trans. Imaging Proc. 10(2), 266–277 (2001). doi: 10.1109/83.902291 CrossRefzbMATHGoogle Scholar
  11. 11.
    Cheng, J., Grossman, M., McKercher, T.: Professional CUDA C Programming. Wiley, Indianapolis (2014)Google Scholar
  12. 12.
    Davies, E.R.: The effect of noise on edge orientation computations. Pattern Recogn. Lett. 6(5), 315–322 (1987)CrossRefGoogle Scholar
  13. 13.
    De Fontes, F.P.X., Barroso, G.A., Coupé, P.: Real time ultrasound image denoising. J. Real-Time Image Process. 6(1), 15–22 (2011)CrossRefGoogle Scholar
  14. 14.
    Debreuve, E., Barlaud, M., Marmorat, J.P., Aubert, G.: Active Contour Segmentation with a Parametric Shape Prior: Link with the Shape Gradient. In: ICIP, IEEE, pp. 1653–1656 (2006)Google Scholar
  15. 15.
    Gadeski, E., Fard, H.O., Le Borgne, H.: Gpu deformable part model for object recognition. J. Real-Time Image Process., 1–13 (2014)Google Scholar
  16. 16.
    Havel, J., Dubská, M., Herout, A., Josth, R.: Real-time detection of lines using parallel coordinates and cuda. J. Real-Time Image Process. 9(1), 205–216 (2014)CrossRefGoogle Scholar
  17. 17.
    Herout, A., Josth, R., Juránek, R., Havel, J., Hradis, M., Zemcík, P.: Real-time object detection on cuda. J. Real-Time Image Process. 6(3), 159–170 (2011)CrossRefGoogle Scholar
  18. 18.
    Hough, P.: Method and means for recognizing complex patterns (1962). URL: http://www.google.co.in/patents/US3069654. Us patent 3,069,654
  19. 19.
    Illingworth, J., Kittler, J.: A survey of the hough transform. Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988)CrossRefGoogle Scholar
  20. 20.
    Ioannou, D., Huda, W., Laine, A.F.: Circle recognition through a 2d hough transform and radius histogramming. Image Vis. Comput. 17(1), 15–26 (1999)CrossRefGoogle Scholar
  21. 21.
    Jacob, M., Blu, T., Unser, M.: Efficient energies and algorithms for parametric snakes. IEEE Trans. Image Process. 13, 1231–1244 (2004)CrossRefGoogle Scholar
  22. 22.
    Jan Essbach, B.L., Nacke, C.: Hough transform: Serial and parallel implementations. Tech. rep. URL: http://www.essbach.org/wp-content/uploads/2013/05/Hough
  23. 23.
    Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators. Commun. ACM 18(2), 120–122 (1975)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kirk, D.B.: Programming Massively Parallel Processors: A Hands-on Approach, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2010)Google Scholar
  25. 25.
    Kumar, P., Singhal, A., Mehta, S., Mittal, A.: Real-time moving object detection algorithm on high-resolution videos using gpus. J. Real-Time Image Process., 1–17 (2013)Google Scholar
  26. 26.
    Laborda, M.A.M., Moreno, E.F.T., del Rincón, J.M., Jaraba, J.E.H.: Real-time gpu color-based segmentation of football players. J. Real-Time Image Process. 7(4), 267–279 (2012)CrossRefGoogle Scholar
  27. 27.
    Lamas-Rodríguez, J., Heras, D.B., Arguello, F., Kainmueller, D., Zachow, S., Bóo, M.: Gpu-accelerated level-set segmentation. J. Real-Time Image Process., 1–15 (2013)Google Scholar
  28. 28.
    Levenverg, K.: A method for the solution of certain non-linear problems in least-squares. Q. Appl. Math. 2(2), 164–168 (1944)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Marquez-Neila, P., Baumela, L., Alvarez, L.: A morphological approach to curvature-based evolution of curves and surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 2–17 (2014)CrossRefGoogle Scholar
  30. 30.
    NVIDIA, C.: Cuda c best practices guide. Technical report. URL: http://docs.nvidia.com/cuda/cuda-c-best-practices-guide
  31. 31.
    Pao, D.C.W., Li, H.F., Jayakumar, R.: Shapes recognition using the straight line hough transform: theory and generalization. IEEE Trans. Pattern Anal. Mach. Intell. 14(11), 1076–1089 (1992)CrossRefGoogle Scholar
  32. 32.
    Paragios, N., Deriche, R.: Geodesic active regions and level set methods for motion estimation and tracking. Comput. Vis. Image Underst. 97(3), 259–282 (2005)CrossRefGoogle Scholar
  33. 33.
    Podlozhnyuk, V.: Image convolution with cuda. NVIDIA Corporation, Technical report (2007)Google Scholar
  34. 34.
    Ptrucean, V., Gurdjos, P., von Gioi, R.: A parameterless line segment and elliptical arc detector with enhanced ellipse fitting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision ECCV 2012. Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp. 572–585 (2012)Google Scholar
  35. 35.
    Trujillo-Pino, A., Krissian, K., Aleman-Flores, M., Santana-Cedres, D.: Accurate subpixel edge location based on partial area effect. Image Vision Comput. 31(1), 72–90 (2013)CrossRefGoogle Scholar
  36. 36.
    Tsuji, S., Matsumoto, F.: Detection of ellipses by a modified hough transformation. IEEE Trans. Comput. 27(8), 777–781 (1978)CrossRefGoogle Scholar
  37. 37.
    Ujaldon, M., Ruiz, A., Guil, N.: On the computation of the circle hough transform by a GPU rasterizer. Pattern Recogn. Lett. 29(3), 309–318 (2008)CrossRefGoogle Scholar
  38. 38.
    Wang, Y.K., Huang, W.B.: A cuda-enabled parallel algorithm for accelerating retinex. J. Real-Time Image Process. 9(3), 407–425 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Carmelo Cuenca
    • 1
  • Esther González
    • 1
  • Agustín Trujillo
    • 1
  • Julio Esclarín
    • 1
  • Luis Mazorra
    • 1
  • Luis Alvarez
    • 1
    Email author
  • Juan Antonio Martínez-Mera
    • 2
  • Pablo G. Tahoces
    • 2
  • José M. Carreira
    • 3
  1. 1.Departamento de Informática y Sistemas, CTIM: Centro de tecnologías de la ImagenUniversidad de Las Palmas de Gran CanariaLas PamasSpain
  2. 2.Centro Singular de Investigación en Tecnoloxías da Información (CITIUS)University of Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.University Hospital Complex of Santiago de Compostela (CHUS)Santiago de CompostelaSpain

Personalised recommendations