Advertisement

Journal of Real-Time Image Processing

, Volume 13, Issue 1, pp 135–145 | Cite as

Real-time assessment of bone structure positions via ultrasound imaging

  • A. Masson-Sibut
  • A. NakibEmail author
Special Issue Paper

Abstract

Computer-assisted orthopedic surgery allows clinicians to have better results and decreases the number of early prosthetic replacements. Nevertheless, the patient follow-up from pre-operative diagnosis to post-operative control cannot be assessed in a constant referential. In this paper, a real-time algorithm that extracts bone edges from images and, then, derives bony landmarks from these edges is proposed. Indeed, we assess in real-time the bone structure positions via ultrasound imaging to create a useful referential for pre-operative, intra-operative and post-operative measurements. To assist the clinician while acquiring bony anatomical landmarks, the extraction of the bone–soft tissue interface and bony landmarks from ultrasound images is done automatically. The experimentations were performed on a database of images from healthy volunteers, and the obtained results showed the efficiency and the stability of the performance of the proposed method.

Keywords

Real-time Image processing Image segmentation  Ultrasound  Computer-assisted surgery Optimization 

References

  1. 1.
    Ahn, C., Jung, Y., Kwon, O., Seo, J.: Fast segmentation of ultrasound images using robust Rayleigh distribution decomposition. Pattern Recognit. 45(9), 3490–3500 (2012)CrossRefzbMATHGoogle Scholar
  2. 2.
    Amin, D., Kanade, T., Gioia, A.M.D., Jaramaz, B.: Ultrasound registration of the bone surface for surgical navigation. Comput. Aided Surg. 1, 1–16 (2003)CrossRefGoogle Scholar
  3. 3.
    Barratt, D.C., Penney, G.P., Chan, C.S.K., Slomczykowski, M., Carter, T.J., Edwards, P.J., Hawkes, D.J.: Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery. IEEE Trans. Med. Imaging 25(3), 312–323 (2006)CrossRefGoogle Scholar
  4. 4.
    Chang, H., Chen, Z., Huang, Q., Shi, J., Li, X.: Graph-based learning for segmentation of 3D ultrasound images. Neurocomputing 151(2), 632–644 (2015)CrossRefGoogle Scholar
  5. 5.
    Chen, T.K., Abolmaesumi, P., Pichora, D.R., Ellis, R.E.: A system for ultrasound-guided computer-assisted orthopaedic surgery. Comput. Aided Surg. 10(5), 281–292 (2005)CrossRefGoogle Scholar
  6. 6.
    Chevrefils, C., Cheriet, F., Aubin, C.E., Grimard, G.: Texture analysis for automatic segmentation of intervertebral disks of scoliotic spines from MR images. IEEE Trans. Inf. Technol. Biomed. 13(4), 608–620 (2009). doi: 10.1109/TITB.2009.2018286 CrossRefGoogle Scholar
  7. 7.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dubuisson, M.P., Jain, A.: A modified Hausdorff distance for object matching. In: Proceedings of 12th International Conference on Pattern Recognition, vol. 1, pp. 566–568. IEEE Computer Society Press, Jerusalem. doi: 10.1109/ICPR.1994.576361 (1994)
  9. 9.
    Gautheron, T., Leitner, F., Gautheron, C., Ernotte, D.: Navigation with ultra-sound for intra-medullary nailing. Int. Congr. Ser. 1281, 680–683 (2005)CrossRefGoogle Scholar
  10. 10.
    Gupta, D., Anand, R., Tyagi, B.: A hybrid segmentation method based on gaussian kernel fuzzy clustering and region based active contour model for ultrasound medical images. Biomed. Signal Process. Control 16, 98–112 (2015)CrossRefGoogle Scholar
  11. 11.
    He, P., Zheng, J.: Segmentation of tibia bone in ultrasound images using active shape models. In: Proceedings of the International Conference on IEEE Engineering in Medicine and Biology Society, Istanbul, pp. 2712–2715 (2001)Google Scholar
  12. 12.
    Huang, Q., Bai, X., Li, Y., Jin, L., Li, X.: Optimized graph-based segmentation for ultrasound images. Neurocomputing 129, 216–224 (2014)CrossRefGoogle Scholar
  13. 13.
    Jain, A.K., Taylor, R.H.: Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework. Proceedings of International Conference SPIE Medical Imaging, SPIE, Bellingham 5373, 131–142 (2004)Google Scholar
  14. 14.
    Kowalski, M., Górecki, A.: Total knee arthroplasty using the OrthoPilot computer-assisted surgical navigation system. Ortoped. Traumatol. Rehabil. 6(4), 456–460 (2004)Google Scholar
  15. 15.
    Lavallée, S., Cinquin, P., Szeliski, R., Peria, O.: Building a hybrid patient’s model for augmented reality in surgery: a registration problem. Comput. Biol. Med. 25(2), 149–164 (1995)CrossRefGoogle Scholar
  16. 16.
    Ma, B., Ellis, R.E.: Robust registration for computer-integrated orthopedic surgery: laboratory validation and clinical experience. Med. Image Anal. 7(3), 237–250 (2003)CrossRefGoogle Scholar
  17. 17.
    Masson-Sibut, A., Petit, E., Leitner, F., Normand, J., Nakib, A., Pinzuti, J.B. Bone surface segmentation in ultrasound images: application in computer assisted intramedullary nailing of the tibia shaft. In: Proceedings of the 2nd International Workshop on Medical Image Analysis and Description for Diagnosis Systems, Roma, pp. 34–42 (2011)Google Scholar
  18. 18.
    Middleton, F.R., Palmer, S.H.: How accurate is Whiteside’s line as a reference axis in total knee arthroplasty? Knee 14(3), 204–7 (2007). doi: 10.1016/j.knee.2007.02.002. http://www.ncbi.nlm.nih.gov/pubmed/17428665
  19. 19.
    Seghers, D., Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Minimal shape and intensity cost path segmentation. IEEE Trans. Med. Imaging 26(8), 1115–1129 (2007)CrossRefGoogle Scholar
  20. 20.
    Sezgin, M., Sankur, B.: Selection of thresholding methods for nondestructive testing applications. Int. Conf. Image Process. (Thessaloniki, Greece) 3, 764–767 (2001)Google Scholar
  21. 21.
    Sugano, N.: Computer-assisted orthopedic surgery. J. Orthop. Sci. 8(3), 442–448 (2003)CrossRefGoogle Scholar
  22. 22.
    Thomas, J.G., Peters, R.A., Jeanty, P.: Automatic segmentation of ultrasound images using morphological operators. IEEE Trans. Med. Imaging 10(2), 180–186 (1991)CrossRefGoogle Scholar
  23. 23.
    Zheng, G., Kowal, J., González Ballester, Ma., Caversaccio, M., Nolte, L.P.: (i) Registration techniques for computer navigation. Curr. Orthop. 21(3), 170–179 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratoire d’Images, Signaux, et Systèmes Intelligents (EA 3945)Université de Paris Est CréteilCréteilFrance

Personalised recommendations