Advertisement

Journal of Real-Time Image Processing

, Volume 15, Issue 4, pp 739–758 | Cite as

A fast and robust homography scheme for real-time planar target detection

  • Hamid Bazargani
  • Olexa Bilaniuk
  • Robert Laganière
Original Research Paper

Abstract

The present paper is concerned with the problem of robust pose estimation for planar targets in the context of real-time mobile vision. For robust recognition of targets at very low computational costs, we employ feature-based methods which are based on local binary descriptors allowing fast feature matching at run time. The matching set is then fed to a robust parameter estimation algorithm to obtain a reliable estimate of homography. The robust estimation of model parameters, which in our case is a 2D homographic transformation, constitutes an essential part of the whole recognition process. We present a highly optimized and device-friendly implementation of homography estimation through a unified hypothesize-and-verify framework. This framework is specifically designed to meet the growing demand for fast and robust estimation on power-constrained platforms. The focus of the approach described in this paper is not only on developing fast algorithms for the recognition framework, but also on the optimized implementation of such algorithms by accounting for the computing capacity of modern CPUs. The experimentations show that the resulting homography estimation implementation proposed in this paper brings a speedup of 25\(\times\) over the regular OpenCV RANSAC homography estimation function.

Keywords

Target matching Robust estimation Homography  RANSAC Hypothesize and verify 

References

  1. 1.
    Akhoury, S.S., Laganière, R.: Training binary descriptors for improved robustness and efficiency in real-time matching. In: Alfredo, P., (ed.), ICIAP 2013, volume 8157 of Lecture Notes in Computer Science, pp. 288–298 (2013)Google Scholar
  2. 2.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: Computer vision and pattern recognition (CVPR), 2012 IEEE conference on, pp. 510–517 (2012)Google Scholar
  3. 3.
    Barclay, A., Kaufmann, H.: FT-RANSAC: towards robust multi-modal homography estimation. In: Pattern recognition in remote sensing (PRRS), 2014 8th IAPR workshop on, pp. 1–4 (2014)Google Scholar
  4. 4.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Understand. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  5. 5.
    Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In: Computer vision and pattern recognition, 1997, Proceedings 1997 IEEE Computer society conference on, pp. 1000–1006, IEEE (1997)Google Scholar
  6. 6.
    Bilaniuk, O., Bazargani, H., Laganiere, R.: Fast target recognition on mobile devices: revisiting gaussian elimination for the estimation of planar homographies. In: Computer vision and pattern recognition workshops (CVPRW), 2014 IEEE conference on, pp. 119–125, (2014)Google Scholar
  7. 7.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: binary robust independent elementary features. ECCV 2010, volume 6314 of Lecture Notes in Computer Science, pp. 778–792. Springer, Berlin Heidelberg (2010)Google Scholar
  8. 8.
    Chum, O., Matas, J.: Randomized ransac with Td,d test. Image Vis Comput, pp. 448–457 (2002)Google Scholar
  9. 9.
    Chum, O., Matas, J.: Matching with PROSAC—progressive sample consensus. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on, vol. 1, pp. 220–226 (2005)Google Scholar
  10. 10.
    Chum, O., Matas, J.: Optimal randomized RANSAC. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1472–1482 (2008)CrossRefGoogle Scholar
  11. 11.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  13. 13.
    Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the thirtieth annual acm symposium on theory of computing, STOC ’98, pp. 604–613, New York, NY, USA, (1998) ACM. ISBN 0-89791-962-9Google Scholar
  14. 14.
    Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: Computer vision and pattern recognition, 2004. CVPR 2004, Proceedings of the 2004 IEEE computer society conference on, volume 2, pp. II-506, IEEE (2004)Google Scholar
  15. 15.
    Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006)CrossRefGoogle Scholar
  16. 16.
    Lepetit, V., Pilet, J., Fua, P.: Point matching as a classification problem for fast and robust object pose estimation. In: Computer vision and pattern recognition, 2004. CVPR 2004, Proceedings of the 2004 IEEE computer society conference on, vol 2, pp. II-244-II-250, vol. 2 (2004)Google Scholar
  17. 17.
    Leutenegger, S., Chli, M., Siegwart, R.Y.: Brisk: binary robust invariant scalable keypoints. In Computer vision (ICCV), 2011 IEEE international conference on, pp. 2548–2555 (2011)Google Scholar
  18. 18.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Matas, J., Chum, O.: Randomized ransac with sequential probability ratio test. In Computer vision, 2005. ICCV 2005. Tenth IEEE international conference on, vol. 2, pp. 1727–1732 (2005)Google Scholar
  20. 20.
    Matas, J., Chum, O.: Randomized RANSAC, Vienna University of Technology, pp. 49–58 (2002)Google Scholar
  21. 21.
    Mondragòn, I.F., Campoy, P., Martinez, C., Olivares-Mèndez, M.A.: 3d pose estimation based on planar object tracking for uavs control. In: Robotics and automation (ICRA), 2010 IEEE international conference on, pp. 35–41 (2010)Google Scholar
  22. 22.
    Mrquez-Neila, P., Lpez-Alberca, J. Buenaposada, J.M., Baumela, L.: Speeding-up homography estimation in mobile devices. J. Real Time Image Process., pp 1–14 (2013)Google Scholar
  23. 23.
    Niitsuma, H., Rangarajan, P., Kanatani, K.: High accuracy homography computation without iterations. In: Proceedings of 16th symposium sensing imaging inf (SSII10) (2010)Google Scholar
  24. 24.
    Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 448–461 (2010)CrossRefGoogle Scholar
  25. 25.
    Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: USAC: a universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2022–2038 (2013)CrossRefGoogle Scholar
  26. 26.
    Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: Computer vision, 2005. ICCV 2005. Tenth IEEE international conference on, vol. 2, pp. 1508–1515 (2005)Google Scholar
  27. 27.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. ECCV 2006, volume 3951 of Lecture Notes in Computer Science, pp. 430–443. Springer, Berlin Heidelberg (2006)Google Scholar
  28. 28.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: Computer vision (ICCV), 2011 IEEE international conference on, pp. 2564–2571 (2011)Google Scholar
  29. 29.
    Skrypnyk, I., Lowe, D.G.: Scene modelling, recognition and tracking with invariant image features. In: Mixed and augmented reality, 2004. ISMAR 2004. Third IEEE and ACM International symposium on, pp. 110–119 (2004)Google Scholar
  30. 30.
    Taylor, S., Rosten, E., Drummond, T.: Robust feature matching in 2.3 \(\mu\)s. In: Computer vision and pattern recognition workshops, 2009. CVPR Workshops 2009. IEEE computer society conference on, pp. 15–22 (2009)Google Scholar
  31. 31.
    Taylor, S., Drummond, T.: Binary histogrammed intensity patches for efficient and robust matching. Int. J. Comput. Vis. 94(2), 241–265 (2011)CrossRefGoogle Scholar
  32. 32.
    Torr, P.H.S., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Understand. 78, 2000 (2000)CrossRefGoogle Scholar
  33. 33.
    Vincent, E., Laganiere, R.: An empirical study of some feature matching strategies. In: Procedings of conference vision interface, Calgary, Canada, pp. 139–145 (2002)Google Scholar
  34. 34.
    Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D.: Pose tracking from natural features on mobile phones. In: Proceedings of the 7th IEEE/ACM international symposium on mixed and augmented reality, pp. 125–134. IEEE Computer Society (2008)Google Scholar
  35. 35.
    Wald, A.: Sequential Analysis, 1st edn. Wiley, Ney York (1947)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hamid Bazargani
    • 1
  • Olexa Bilaniuk
    • 1
  • Robert Laganière
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada

Personalised recommendations