Journal of Real-Time Image Processing

, Volume 12, Issue 2, pp 247–255 | Cite as

A multiplierless pruned DCT-like transformation for image and video compression that requires ten additions only

  • Vítor A. Coutinho
  • Renato J. Cintra
  • Fábio M. Bayer
  • Sunera Kulasekera
  • Arjuna Madanayake
Special Issue Paper


A multiplierless pruned approximate eight-point discrete cosine transform (DCT) requiring only ten additions is introduced. The proposed algorithm was assessed in image and video compression, showing competitive performance with state-of-the-art methods. Digital synthesis in 45 nm CMOS technology up to place-and-route level indicates clock speed of 288 MHz at a 1.1 V supply. The \(8\times 8\) block rate is 36 MHz. The DCT approximation was embedded into HEVC reference software; resulting video frames, at up to 327 Hz for 8-bit RGB HEVC, presented negligible image degradation.


Approximate discrete cosine transform Pruning Pruned DCT HEVC 



Authors acknowledge partial support from CNPq, FACEPE, FAPERGS, and The University of Akron.


  1. 1.
    Rao, K.R., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages. Applications. Academic Press, San Diego (1990)CrossRefzbMATHGoogle Scholar
  2. 2.
    Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38, xviii–xxxiv (1992)Google Scholar
  3. 3.
    Roma, N., Sousa, L.: Efficient hybrid DCT-domain algorithm for video spatial downscaling. EURASIP J. Adv. Signal Process. 2007, 057291 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    International Organisation for Standardisation: Generic coding of moving pictures and associated audio information—part 2: video. ISO/IEC JTC1/SC29/WG11—coding of moving pictures and audio, ISO (1994)Google Scholar
  5. 5.
    International Telecommunication Union: ITU-T recommendation H.261 version 1: video codec for audiovisual services at \(p \times 64\) kbits. Technical report, ITU-T (1990)Google Scholar
  6. 6.
    International Telecommunication Union: ITU-T recommendation H.263 version 1: Video coding for low bit rate communication. Technical report, ITU-T (1995)Google Scholar
  7. 7.
    Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13, 560–576 (2003)CrossRefGoogle Scholar
  8. 8.
    Joint Video Team: Recommendation H.264 and ISO/IEC 14 496–10 AVC: Draft ITU-T recommendation and final draft international standard of joint video specification. Technical report, ITU-T (2003)Google Scholar
  9. 9.
    International Telecommunication Union: High efficiency video coding: recommendation ITU-T H.265. Technical report, ITU-T series H: audiovisual and multimedia systems (2013)Google Scholar
  10. 10.
    Pourazad, M.T., Doutre, C., Azimi, M., Nasiopoulos, P.: HEVC: the new gold standard for video compression: how does HEVC compare with H.264/AVC? IEEE Consum. Electron. Mag. 1, 36–46 (2012)CrossRefGoogle Scholar
  11. 11.
    Sullivan, G.J., Ohm, J., Han, W., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22, 1649–1668 (2012)CrossRefGoogle Scholar
  12. 12.
    Bayer, F.M., Cintra, R.J., Madanayake, A., Potluri, U.S.: Multiplierless approximate 4-point DCT VLSI architectures for transform block coding. Electron. Lett. 49, 1532–1534 (2013)CrossRefGoogle Scholar
  13. 13.
    Park, J., Nam, W., Han, S., Lee, S.: 2-D large inverse transform (\(16\times 16\), \(32\times 32\)) for HEVC (high efficiency video coding). J. Semicond. Technol. Sci. 2, 203–211 (2012)CrossRefGoogle Scholar
  14. 14.
    Park S., Meher, P.K.: Flexible integer DCT architectures for HEVC. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1376–1379 (2013)Google Scholar
  15. 15.
    Potluri, U.S., Madanayake, A., Cintra, R.J., Bayer, F.M., Kulasekera, S., Edirisuriya, A.: Improved 8-point approximate DCT for image and video compression requiring only 14 additions. IEEE Trans. Circuits Syst. I: Regul. Papers 61(6), 1727–1740 (2014)CrossRefGoogle Scholar
  16. 16.
    Ohm, J., Sullivan, G.J., Schwarz, H., Tan, T.K., Wiegand, T.: Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22, 1669–1684 (2012)CrossRefGoogle Scholar
  17. 17.
    Haweel, T.I.: A new square wave transform based on the DCT. Signal Process. 82, 2309–2319 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: Low-complexity \(8\times 8\) transform for image compression. Electron. Lett. 44, 1249–1250 (2008)CrossRefGoogle Scholar
  19. 19.
    Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: A fast \(8\times 8\) transform for image compression. In: International Conference on Microelectronics (ICM), pp. 74–77, Dec (2009)Google Scholar
  20. 20.
    Bouguezel, S., Ahmad, M.O., Swamy, M.N.S.: Binary discrete cosine and Hartley transforms. IEEE Trans. Circuits Syst. I: Regul. Papers 60, 989–1002 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Cintra, R.J., Bayer, F.M.: A DCT approximation for image compression. IEEE Signal Process. Lett. 18, 579–582 (2011)CrossRefGoogle Scholar
  22. 22.
    Bayer, F.M., Cintra, R.J.: DCT-like transform for image compression requires 14 additions only. Electron. Lett. 48, 919–921 (2012)CrossRefGoogle Scholar
  23. 23.
    Cintra, R.J., Bayer, F.M., Tablada, C.J.: Low-complexity 8-point DCT approximations based on integer functions. Signal Process. 99, 201–214 (2014)CrossRefGoogle Scholar
  24. 24.
    Tablada, C.J., Bayer, F.M., Cintra, R.J.: A class of DCT approximations based on the Feig–Winograd algorithm. Signal Process. 113, 38–51 (2015)CrossRefGoogle Scholar
  25. 25.
    Rao, K.R.: The Transform and Data Compression Handbook. CRC Press LLC, Boca Raton (2001)zbMATHGoogle Scholar
  26. 26.
    Huang, Y., Wu, J., Chang, C.: A generalized output pruning algorithm for matrix–vector multiplication and its application to compute pruning discrete cosine transform. IEEE Trans. Signal Process. 48, 561–563 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Markel, J.: FFT pruning. IEEE Trans. Audio Electroacoust. 19, 305–311 (1971)CrossRefGoogle Scholar
  28. 28.
    Skinner, D.P.: Pruning the decimation in-time FFT algorithm. IEEE Trans. Acoust. Speech Signal Process. 24, 193–194 (1976)CrossRefGoogle Scholar
  29. 29.
    Alves, R.G., Osorio P.L., Swamy, M.N.S.: General FFT pruning algorithm. In: 43rd IEEE Midwest Symposium on Circuits and Systems, vol. 3, pp. 1192–1195 (2000)Google Scholar
  30. 30.
    Wang, L., Zhou, X., Sobelman, G.E., Liu, R.: Generic mixed-radix FFT pruning. IEEE Signal Process. Lett. 19, 167–170 (2012)CrossRefGoogle Scholar
  31. 31.
    Airoldi, R., Anjum, O., Garzia, F., Wyglinski, A.M.: Energy-efficient fast Fourier transforms for cognitive radio systems. IEEE Micro 30, 66–76 (2010)CrossRefGoogle Scholar
  32. 32.
    Whatmough, P.N., Perrett, M.R., Isam, S., Darwazeh, I.: VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter. IEEE Trans. Circuits Syst. I: Regul. Papers 59, 1107–1118 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Oppenheim, A., Schafer, R.: Discrete-Time Signal Processing, 3rd edn. Pearson, Upper Saddle River (2010)zbMATHGoogle Scholar
  34. 34.
    Kim, J.H., Kim, J.G., Ji, Y., Jung, Y., Won, C.: An islanding detection method for a grid-connected system based on the Goertzel algorithm. IEEE Trans. Power Electron. 26, 1049–1055 (2011)CrossRefGoogle Scholar
  35. 35.
    Carugati, I., Maestri, S., Donato, P.G., Carrica, D., Benedetti, M.: Variable sampling period filter PLL for distorted three-phase systems. IEEE Trans. Power Electron. 27, 321–330 (2012)CrossRefGoogle Scholar
  36. 36.
    Wang, Z.: Pruning the fast discrete cosine transform. IEEE Trans. Commun. 39, 640–643 (1991)CrossRefGoogle Scholar
  37. 37.
    Skodras, A.N.: Fast discrete cosine transform pruning. IEEE Trans. Signal Process. 42, 1833–1837 (1994)CrossRefGoogle Scholar
  38. 38.
    Lecuire, V., Makkaoui, L., Moureaux, J.-M.: Fast zonal DCT for energy conservation in wireless image sensor networks. Electron. Lett. 48, 125–127 (2012)CrossRefGoogle Scholar
  39. 39.
    Karakonstantis, G., Banerjee, N., Roy, K.: Process-variation resilient and voltage-scalable DCT architecture for robust low-power computing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18, 1461–1470 (2009)CrossRefGoogle Scholar
  40. 40.
    Kouadria, N., Doghmane, N., Messadeg, D., Harize, S.: Low complexity DCT for image compression in wireless visual sensor networks. Electron. Lett. 49, 1531–1532 (2013)CrossRefGoogle Scholar
  41. 41.
    Meher, P.K., Park, S.Y., Mohanty, B.K., Lim, K.S., Yeo, C.: Efficient integer DCT architectures for HEVC. IEEE Trans. Circuits Syst. Video Technol. 24, 168–178 (2014)CrossRefGoogle Scholar
  42. 42.
    Joint Collaborative Team on Video Coding (JCT-VC). HEVC reference software documentation. Technical report, Fraunhofer Heinrich Hertz Institute (2013)Google Scholar
  43. 43.
    Britanak, V., Yip, P., Rao, K.R.: Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximation. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  44. 44.
    Cintra, R.J.: An integer approximation method for discrete sinusoidal transforms. J. Circuits Syst. Signal Process. 30, 1481–1501 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    The USC-SIPI image database. University of Southern California, Signal and Image Processing Institute (2011).
  46. 46.
    Blahut, R.E.: Fast Algorithms for Signal Processing. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  47. 47.
    Makkaoui, L., Lecuire, V., Moureaux, J.: Fast zonal DCT-based image compression for wireless camera sensor networks. In: 2nd International Conference on Image Processing Theory Tools and Applications (IPTA), pp. 126–129 (2010)Google Scholar
  48. 48.
    Seber, G.A.F.: A Matrix Handbook for Statisticians. Wiley, New York (2008)zbMATHGoogle Scholar
  49. 49.
    Chen, W.H., Smith, C., Fralick, S.: A fast computational algorithm for the discrete cosine transform. IEEE Trans. Commun. 25(9), 1004–1009 (1977)CrossRefzbMATHGoogle Scholar
  50. 50.
    Bhaskaran, V., Konstantinides, K.: Image and Video Compression Standards. Kluwer Academic Publishers, Boston (1997)CrossRefGoogle Scholar
  51. 51.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)CrossRefGoogle Scholar
  52. 52.
    Joint Collaborative Team on Video Coding (JCT-VC). HEVC references software documentation. Fraunhofer Heinrich Hertz Institute (2013).

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vítor A. Coutinho
    • 1
  • Renato J. Cintra
    • 1
    • 2
    • 3
  • Fábio M. Bayer
    • 4
  • Sunera Kulasekera
    • 5
  • Arjuna Madanayake
    • 5
  1. 1.Signal Processing Group, Departamento de Estatística and The Graduate Program in Electrical EngineeringUniversidade Federal de PernambucoRecifeBrazil
  2. 2.LIRISInstitut National des Sciences Appliquées (INSA)LyonFrance
  3. 3.Equipe Cairn, IRISA/INRIAUniversité de Rennes 1RennesFrance
  4. 4.Departamento de Estatística and LACESMUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil
  5. 5.Department of Electrical and Computer EngineeringThe University of AkronAkronUSA

Personalised recommendations