Journal of Real-Time Image Processing

, Volume 14, Issue 2, pp 453–467 | Cite as

Parallelization strategies for markerless human motion capture

  • Alberto Cano
  • Enrique Yeguas-Bolivar
  • Rafael Muñoz-SalinasEmail author
  • Rafael Medina-Carnicer
  • Sebastián Ventura
Original Research Paper


Markerless motion capture (MMOCAP) is the problem of determining the pose of a person from images captured by one or several cameras simultaneously without using markers on the subject. Evaluation of the solutions is frequently the most time-consuming task, making most of the proposed methods inapplicable in real-time scenarios. This paper presents an efficient approach to parallelize the evaluation of the solutions in CPUs and GPUs. Our proposal is experimentally compared on six sequences of the HumanEva-I dataset using the CMAES algorithm. Multiple algorithm’s configurations were tested to analyze the best trade-off with regard to the accuracy and computing time. The proposed methods obtain speedups of 8\(\times\) in multi-core CPUs, 30\(\times\) in a single GPU and up to 110\(\times\) using 4 GPUs.


Markerless motion capture (MMOCAP) GPU Tracking 



This research was supported by the Spanish Ministry of Science and Technology, projects TIN-2011-22408 and TIN-2012-32952, and by FEDER funds. This research was also supported by the Spanish Ministry of Education under FPU grant AP2010-0042.


  1. 1.
    Multon, F., Kulpa, R., Hoyet, L., Komura, T.: Interactive animation of virtual humans based on motion capture data. J. Vis. Comput. Animat. 20(5–6), 491–500 (2009)Google Scholar
  2. 2.
    Zhou, H., Huosheng, H.: Human motion tracking for rehabilitation-a survey. Biomed. Signal Process. Control. 3(1), 1–18 (2008)CrossRefGoogle Scholar
  3. 3.
    Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104, 90–126 (2006)CrossRefGoogle Scholar
  4. 4.
    Sigal, L., Balan, A.O., Black, M.J.: Humaneva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vis. 87, 4–27 (2010)CrossRefGoogle Scholar
  5. 5.
    Isard, M., Blake, A.: Condensation—conditional density propagation for visual tracking. Int. J. Comput. Vis. 29, 5–28 (1998)CrossRefGoogle Scholar
  6. 6.
    Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. Int. J. Comput. Vis. 61(2), 185–205 (2005)CrossRefGoogle Scholar
  7. 7.
    Corazza, S., Mündermann, L., Chaudhari, A., Demattio, T., Cobelli, C., Andriacchi, T.: A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Ann. Biomed. Eng. 34(6), 1019–1029 (2006)CrossRefGoogle Scholar
  8. 8.
    John, M., Michael I.: Partitioned sampling, articulated objects, and interface-quality hand tracking. In: Proceedings of the 6th European Conference on Computer Vision-Part II, ECCV ’00, pp 3–19. Springer, London (2000)Google Scholar
  9. 9.
    Jan, B., Florian, E., Michael B.: Evaluation of hierarchical sampling strategies in 3D human pose estimation. In: Proceedings of the 19th British Machine Vision Conference, pp. 1–10 (2008)Google Scholar
  10. 10.
    Lozano, M., Molina, D., Herrera, F. (eds.): Special issue on scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems. Soft computing, vol. 15. Springer, Berlin/Heidelberg (2011)Google Scholar
  11. 11.
    John, V., Trucco, E., Ivekovic, S.: Markerless human articulated tracking using hierarchical particle swarm optimisation. Image Vis. Comput. 28(11), 1530–1547 (2010)CrossRefGoogle Scholar
  12. 12.
    Zhao, X., Liu, Y.: Generative tracking of 3D human motion by hierarchical annealed genetic algorithm. Pattern Recognit. 41(8), 2470–2483 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Yeguas-Bolivar, E., Muñnoz-Salinas, R., Medina-Carnicer, R., Carmona-Poyato, A.: Comparing evolutionary algorithms and particle filters for markerless human motion capture. Appl. Soft Comput. 17, 153–166 (2014)CrossRefGoogle Scholar
  14. 14.
    Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A., Larranaga, P., Inza, I., Bengoetxea, E., (eds.) Towards a new evolutionary computation. Advances on Estimation of Distribution Algorithms, pp. 75–102. Springer, Berlin (2006)Google Scholar
  15. 15.
    Kenneth, V., Price, R.M.S., Jouni A.L.: Differential evolution a practical approach to global optimization. In: The Differential Evolution Algorithm, pp. 37–134. Natural Computing Series. Springer, Berlin (2005) Google Scholar
  16. 16.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  17. 17.
    Chang, I.-C., Lin, S.-Y.: 3D human motion tracking based on a progressive particle filter. Pattern Recognit. 43(10), 3621–3635 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gall, J., Rosenhahn, B., Brox, T., Seidel, H.-P.: Optimization and filtering for human motion capture. Int. J. Comput. Vis. 87(1–2), 75–92 (2010)CrossRefGoogle Scholar
  19. 19.
    Cappozzo, A., Ugo D.C., Alberto L., Lorenzo C.: Human movement analysis using stereophotogrammetry: Part 1: theoretical background. Gait Posture. 21(2), 186–196 (2005)Google Scholar
  20. 20.
    Chiari, L., Ugo D.C., Alberto L., Aurelio C.: Human movement analysis using stereophotogrammetry: Part 2: Instrumental errors. Gait Posture. 21(2), 197–211 (2005)CrossRefGoogle Scholar
  21. 21.
    Ugo, D.C, Alberto, L., Lorenzo, C., Aurelio, C.: Alberto Leardini, Lorenzo Chiari, and Aurelio Cappozzo. Human movement analysis using stereophotogrammetry: Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture. 21(2), 226–237 (2005)CrossRefGoogle Scholar
  22. 22.
    Leardini, A., Chiari, L., Ugo D.C., Aurelio C.: Human movement analysis using stereophotogrammetry: Part 3. soft tissue artifact assessment and compensation. Gait Posture. 21(2), 212–225 (2005)CrossRefGoogle Scholar
  23. 23.
    Chitty, D.M.: Fast parallel genetic programming: Multi-core cpu versus many-core gpu. Soft Comput. 16(10), 1795–1814 (2012)CrossRefGoogle Scholar
  24. 24.
    Creel, M., Goffe, W.L.: Multi-core CPUs, clusters, and grid computing: a tutorial. Comput. Eco. 32(4), 353–382 (2008)CrossRefzbMATHGoogle Scholar
  25. 25.
    Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron, K.: A performance study of general-purpose applications on graphics processors using CUDA. J. Parallel Dist. Comput. 68(10), 1370–1380 (2008)CrossRefGoogle Scholar
  26. 26.
    Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Comput. Gr. Forum 26(1), 80–113 (2007)CrossRefGoogle Scholar
  27. 27.
    NVIDIA Corporation. NVIDIA CUDA Programming and Best Practices Guide. (2014)
  28. 28.
    Rymut, B., Kwolek, B.: GPU-supported object tracking using adaptive appearance models and particle swarm optimization. In: Proceedings of the 2010 international conference on Computer vision and graphics: Part II, ICCVG’10, pp. 227–234 (2010)Google Scholar
  29. 29.
    Krzeszowski, T., Kwolek, B., Wojciechowski, K.: GPU-accelerated tracking of the motion of 3D articulated figure. Comput. Vis. Gr. pp. 155–162 (2010)Google Scholar
  30. 30.
    Luca, M., Spela, I., Stefano, C.: Markerless articulated human body tracking from multi-view video with GPU-PSO. In: Gianluca, T., Andy, M.T., Julian F.M., (eds.) Evolvable systems: from biology to hardware, vol. 6274, Lecture Notes in Computer Science, pp. 97–108 (2010)Google Scholar
  31. 31.
    Rymut, B., Kwolek, B., Krzeszowski, T.: GPU-accelerated human motion tracking using particle filter combined with PSO. Advanced concepts for intelligent vision systems. Lect. Notes Comput. Sci. 8192, pp. 426–437 (2013)CrossRefGoogle Scholar
  32. 32.
    Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 1493–1500 (2009)Google Scholar
  33. 33.
    Ugolotti, R., Youssef S.G.N., Pablo M., Lvekovi, P., Luca M., Stefano C.: Particle swarm optimization and differential evolution for model-based object detection. Appl. Soft Comput. 13(6), 3092–3105 (2013)CrossRefGoogle Scholar
  34. 34.
    Zheng, Z., Hock, S.S.: Cuda acceleration of 3D dynamic scene reconstruction and 3D motion estimation for motion capture. In: IEEE 18th International Conference on Parallel and Distributed Systems (ICPADS), pp. 284–291 (2012)Google Scholar
  35. 35.
    Zhang, Z., Hock, S.S, Chee K.Q., Jixiang, S.: GPU-accelerated real-time tracking of full-body motion with multi-layer search. IEEE Trans. Multimed. 15, 106–119 (2013)CrossRefGoogle Scholar
  36. 36.
    Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real time motion capture using a single time-of-flight camera. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 755–762 (2010)Google Scholar
  37. 37.
    Diaz-Mas, L., Madrid-Cuevas, F.J., Muñoz-Salinas, R., Carmona-Poyato, A., Medina-Carnicer, R.: An octree-based method for shape from inconsistent silhouettes. Pattern Recognit. 45(9), 3245–3255 (2012)CrossRefGoogle Scholar
  38. 38.
    Diaz-Mas, L., Muñoz-Salinas, R., Medina-Carnicer, R., Madrid-Cuevas, F.J.: Shape from silhouette using dempster-shafer theory. Pattern Recognit. 43(6), 2119–2131 (2010)CrossRefzbMATHGoogle Scholar
  39. 39.
    Muñoz-Salinas, R., Yeguas-Bolivar, E., Diaz-Mas, L., Medina-Carnicer, R.: Shape from pairwise silhouettes for plan-view map generation. Image Vis. Comput. 30(2), 122–133 (2012)CrossRefGoogle Scholar
  40. 40.
    Horprasert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: 7th IEEE International Conference on Computer Vision, Frame Rate Workshop (ICCV ’99), pp. 1–19 (1999)Google Scholar
  41. 41.
    Grégory, R., Carlos O.-U., Martínez-del Rincón, J.: A spatio-temporal 2D-models framework for human pose recovery in monocular sequences. Pattern Recognit. 41, 2926–2944 (2008)Google Scholar
  42. 42.
    Sundaresan, A., Chellappa, R.: Model driven segmentation of articulating humans in laplacian eigenspace. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1771–1785 (2008)CrossRefGoogle Scholar
  43. 43.
    Zhao, X., Liu, Y.: Generative tracking of 3d human motion by hierarchical annealed genetic algorithm. Pattern Recognit. 41, 2470–2483 (2008)CrossRefzbMATHGoogle Scholar
  44. 44.
    Manuel, B., Marc F., Jose C.: Makehuman Team. (2014)
  45. 45.
    Maeda, T., Yamasaki, T., Aizawa, K.: Model-based analysis and synthesis of time-varying mesh. Lect. Notes Comput. Sci. 5098, 112–121 (2008)CrossRefGoogle Scholar
  46. 46.
    Schmaltz, C., Rosenhahn, B., Brox, T., Weickert, J., Wietzke, L., Sommer, G.: Dealing with self-occlusion in region based motion capture by means of internal regions. Lect. Notes Comput. Sci. 5098, 102–111 (2008)CrossRefGoogle Scholar
  47. 47.
    Shaheen, M., Gall, J., Strzodka, R., Van G.L., Seidel, H.P.: A comparison of 3D model-based tracking approaches for human motion capture in uncontrolled environments. Appl. Comput. Vis. pp. 1–8 (2009)Google Scholar
  48. 48.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  49. 49.
    García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)CrossRefGoogle Scholar
  50. 50.
    Kalyanmoy D.: Multi-objective optimization. In: Edmund, K.B., Graham, K., (eds.) Search methodologies, pp. 273–316. Springer, Berlin (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alberto Cano
    • 1
  • Enrique Yeguas-Bolivar
    • 1
    • 2
  • Rafael Muñoz-Salinas
    • 1
    • 2
    Email author
  • Rafael Medina-Carnicer
    • 1
    • 2
  • Sebastián Ventura
    • 1
  1. 1.Department of Computer Science and Numerical AnalysisUniversity of CordobaCórdobaSpain
  2. 2.Maimonides Institute for Biomedical Research (IMIBIC)CórdobaSpain

Personalised recommendations