Advertisement

Journal of Real-Time Image Processing

, Volume 11, Issue 2, pp 287–299 | Cite as

Real-time camera motion tracking in planar view scenarios

  • Luis Alvarez
  • Luis Gomez
  • Pedro HenriquezEmail author
  • Javier Sánchez
Special Issue Paper

Abstract

We propose a novel method for real-time camera motion tracking in planar view scenarios. This method relies on the geometry of a tripod, an initial estimation of camera pose for the first video frame and a primitive tracking procedure. This process uses lines and circles as primitives, which are extracted applying classification and regression tree. We have applied the proposed method to high-definition videos of soccer matches. Experimental results prove that our proposal can be applied to processing high-definition video in real time. We validate the procedure by inserting virtual content in the video sequence.

Keywords

Camera motion tracking Camera calibration Tripod Primitives tracking CART 

Notes

Acknowledgments

This research work has been partially supported by the MICINN project reference MTM2010-17615 (Ministry of Science and Innovation, Spain). We acknowledge MEDIAPRODUCCION S.L. for providing us with the real HD video we used in the experiments.

References

  1. 1.
    Thomas, G.: Real-time camera tracking using sports pitch markings. J. Real Time Image Process. 2(2–3), 117–132 (2007)CrossRefGoogle Scholar
  2. 2.
    Chandaria, J., Thomas, G., Stricker, D.: The MATRIS project: real-time markerless camera tracking for augmented reality and broadcast applications. J. Real Time Image Process. 2(2–3), 69–79 (2007)CrossRefGoogle Scholar
  3. 3.
    Santos, P., Stork, A., Buaes, A., Pereira, C., Jorge, J.: A real-time low-cost marker-based multiple camera tracking solution for virtual reality applications. J. Real Time Image Process. 5(2), 121–128 (2009)CrossRefGoogle Scholar
  4. 4.
    Agapito, L., Hayman, E., Reid, I.: Self-calibration of rotating and zooming cameras. Int. J. Comput. Vis. 45:107–127 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hartley, R.: Self-calibration from multiple views with a rotating camera. Eur. Conf. Comput. Vis. 800, 471–478 (1994)Google Scholar
  6. 6.
    Junejo, I., Foroosh, H.: Practical PTZ camera calibration using Givens rotations. In: 15th IEEE International Conference on Image Processing, pp. 1936–1939 (2008)Google Scholar
  7. 7.
    Senior, A., Hampapur, A., Lu, M.: Acquiring multi-scale images by pan–tilt–zoom control and automatic multi-camera calibration. In: Seventh IEEE Workshop on Applications of Computer Vision, pp. 433–438 (2002)Google Scholar
  8. 8.
    Davis, J., Chen, X.: Calibrating pan–tilt cameras in wide-area surveillance networks. In: 9th IEEE International Conference on Computer Vision, pp. 144–149 (2003)Google Scholar
  9. 9.
    Li, H., Shen, C.: An LMI approach for reliable PTZ camera self-calibration. In: IEEE International Conference on Video and Signal Based Surveillance, (2006)Google Scholar
  10. 10.
    Basu, A., Ravi, K.: Active camera calibration using pan, tilt and roll. IEEE Trans. Syst. Man Cybern. Part B Cybern. 27(3), 559–566 (1997)CrossRefGoogle Scholar
  11. 11.
    Hayman, E., Murray, D.: The effects of translational misalignment when self-calibration rotating and zooming cameras. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1015–1020 (2003)CrossRefGoogle Scholar
  12. 12.
    Hayet, J.B., Piater, J.: On-line rectification of sport sequences with moving cameras. MICAI Adv. Artif. Intell. 4827, 736–746 (2007)Google Scholar
  13. 13.
    Kim, H., Hong, K.S.: Robust image mosaicing of soccer videos using self-calibration and line tracking. In: Pattern Anal. Appl. 4, 9–19 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Li, Q., Luo, Y.: Automatic camera calibration for images of soccer match. In: Proceedings of World Academy of Science, Engineering and Technology, vol. 1, pp. 170–173 (2005)Google Scholar
  15. 15.
    Sankoh, H., Sugano, M., Naito, S.: Dynamic camera calibration method for free-viewpoint experience in sport videos. In: MM 12 Proceedings of the 20th ACM International Conference on Multimedia, pp. 1125–1128 (2012)Google Scholar
  16. 16.
    Watanabe, Y., Haseyama, M., Kitajima, H.: A soccer field tracking method with wire frame model from TV images. In: International Conference on Image Processing, vol. 1-5, pp. 1633–1636 (2004)Google Scholar
  17. 17.
    Farin, D., Han, J.G., de With, P.H.N.: Fast camera calibration for the analysis of sport sequences. In: IEEE International Conference on Multimedia and Expo (ICME), vol. 1–2, pp. 482–485 (2005)Google Scholar
  18. 18.
    Battikh, T., Jabri, I.: Camera calibration using court models for real-time augmenting soccer scenes. Multimedia Tools Appl. 51, 997–1011 (2011)CrossRefGoogle Scholar
  19. 19.
    Kashany, V.B., Pourreza, H.R.I.: Camera parameters estimation in soccer scenes on the basis of points at infinity. IET Comput. Vis. 6(2), 133–139 (2012)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Gao, X., Niu, Z., Tao, D., Li, X.: Non-goal scene analysis for soccer video. Neurocomputing. 74(4), 540–548 (2011)CrossRefGoogle Scholar
  21. 21.
    Jiang, B., Songyang, L., Liang, B.: Automatic line mark recognition and its application in camera calibration in soccer video. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6, (2011)Google Scholar
  22. 22.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth, Belmont (1984)Google Scholar
  23. 23.
    Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Trans. Pattern Anal. Mach. Intell. (2010)Google Scholar
  24. 24.
    Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006)Google Scholar
  25. 25.
    Emre Celebi, M., Iyatomi, H., Stoecker, W.V., Mossd, R.H., Rabinovitz, H.S., Argenziano, G., Soyer, H.P.: Automatic detection of blue white veil and related structures in dermoscopy images. Comput. Med. Imaging Gr. 32, 670–677 (2008) CrossRefGoogle Scholar
  26. 26.
    Macchiavello, G., Moser, G., Boni, G., Serpico, S.B.: Automatic unsupervised classification of snow-covered areas by decision-tree classification and minimun error thresholding. IEEE International Geoscience Remote Sensing Symposium, vol. 1–5, pp. 1251–1254 (2009)Google Scholar
  27. 27.
    Zili, Z., Qiming, Q., Junping, G., Yuzhi, D., Yunjun, Y., Zhaoqiang, W., Fanwei, D.: CART-based rare habitat information extraction for Landsat ETM+. In: IEEE International Geoscience and Remote Sensing Symposium, vol. 3, pp. 1071–1074 (2008)Google Scholar
  28. 28.
    Alvarez, L., Gomez, L., Henriquez. P., Mazorra. L.: Automatic camera pose recognition in planar view scenarios. In: LNCS, 17th Iberoamerican Congress on Pattern Recognition.(CIARP), vol. 7441, pp. 406–413 (2012)Google Scholar
  29. 29.
    Alvarez, L., Gomez, L., Sendra, J.R.: Accurate Depth dependent lens distortion models: an application to planar view scenarios. J. Math. Imaging Vis. 39:75–85 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Pena, D.: Análisis de datos multivariantes. Madrid, (2002)Google Scholar
  31. 31.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Canada, (2002)Google Scholar
  32. 32.
    Aleman-Flores, M., Alvarez, L., Henriquez, P., Mazorra, L.: Morphological thick line center detection. In: LNCS, 7th International Conference on Image Analysis and Recognition. (ICIAR), vol. 6111, pp. 71–80 (2010)Google Scholar
  33. 33.
    Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory Parallel Programming, (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luis Alvarez
    • 1
  • Luis Gomez
    • 2
  • Pedro Henriquez
    • 1
    Email author
  • Javier Sánchez
    • 1
  1. 1.Departamento de Informática y Sistemas, CTIM: Centro de I+D de Tecnologías de la ImagenUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.Departamento de Ingeniería Electrónica y Automática, CTIM: Centro de I+D de Tecnologías de la ImagenUniversidad de Las Palmas de Gran CanariaLas PalmasSpain

Personalised recommendations