Journal of Real-Time Image Processing

, Volume 11, Issue 1, pp 141–154 | Cite as

Speeding-up homography estimation in mobile devices

  • Pablo Márquez-Neila
  • Javier López-Alberca
  • José M. Buenaposada
  • Luis Baumela
Original Research Paper

Abstract

A critical problem faced by computer vision on mobile devices is reducing the computational cost of algorithms and avoiding visual stalls. In this paper, we introduce a procedure for reducing the number of samples required for fitting a homography to a set of noisy correspondences using a random sampling method. This is achieved by means of a geometric constraint that detects invalid minimal sets. In the experiments conducted, we show that this constraint not only reduces the number of random samples at a negligible computational cost but also balances the processor workload over time preventing visual stalls. In extreme situations of very large outlier proportion and noise level, it reduces in about one order of magnitude the number of required random samples.

Keywords

Mobile devices Random sampling Homography estimation 

Mathematics Subject Classification (2000)

MSC 65D19 

References

  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool L.: Speeded-up robust features (SURF). Comp. Vision Image Underst. 110(3), 346–359 (2008)Google Scholar
  2. 2.
    Bruns, E., Bimber, O.: Adaptive training of video sets for image recognition on mobile phones. Pers. Ubiquitous Comput 13:165–178 (2009)Google Scholar
  3. 3.
    Bruns, E., Brombach, B., Zeidler, T., Bimber, O.: Enabling mobile phones to support large-scale museum guidance. IEEE MultiMedia 14, 16–25 (2007)Google Scholar
  4. 4.
    Castells, M.: The Rise of the Network Society. Blackwell Publishers, Oxford (1996)Google Scholar
  5. 5.
    Cheng, C.M., Lai, S.H.: A consensus sampling technique for fast and robust model fitting. Pattern Recognit. 42, 1318–1329 (2009)Google Scholar
  6. 6.
    Chum, O., Matas, J.: Randomized RANSAC with T d,d test. Proc. Br. Machine Vision Conf. 2, 448–457 (2002)Google Scholar
  7. 7.
    Chum, O., Matas, J.: Matching with PROSAC -progressive sample consensus. Proc. Int. Conf. Comput. Vision Pattern Recognit. 1, 220–226 (2005)Google Scholar
  8. 8.
    Chum, O., Werner, T., Matas, J.: Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint. Proc. of the Int. Conf. Pattern Recognit., 112–115 (2004)Google Scholar
  9. 9.
    Fishler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 6, 381–395 (1981)Google Scholar
  10. 10.
    Guerrero, J., Martínez-Cantin, R., Sagüés, C.: Visual map-less navigation based on homographies. J. Robotic Systems 22 (10):569–581 (2005)Google Scholar
  11. 11.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)Google Scholar
  12. 12.
    Henze, N., Schinke, T., Boll, S.: What is that? object recognition from natural features on a mobile phone. In: Mobile Interaction with the Real World (2009)Google Scholar
  13. 13.
    Kim, K., Lepetit, V., Woo, W.: Scalable real-time planar targets tracking for digilog books. In: Computer Graphics International (2010)Google Scholar
  14. 14.
    Kirchhof, M.: Linear constraints in two-view multiple homography estimation of uncalibrated scenes. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII, pp. B3a (2008)Google Scholar
  15. 15.
    Klein, G., Murray, D.: Parallel tracking and mapping on a camera phone. In: Proc. IEEE and ACM International Symposium on Mixed and Augmented Reality, Orlando (2009)Google Scholar
  16. 16.
    Laveau, S., Faugeras, O.D.: Oriented projective geometry for computer vision. In: Proc. Eur. Conf. Computer Vision, pp. 147–156 (1996)Google Scholar
  17. 17.
    Lee, W., Park, Y., Lepetit, V., Woo, W.: Point-and-shoot for ubiquitous tagging on mobile phones. In: Proc. International Symposium on Mixed and Augmented Reality (2010)Google Scholar
  18. 18.
    Lopez-Nicolas, G., Gans, N., Bhattacharya, S., Sagues C., Guerrero, J., Hutchinson, S.: Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints. IEEE Trans. Syst. Man Cybernetics, Part B: Cybernetics 40(4), 1115–1127 (2010a)Google Scholar
  19. 19.
    Lopez-Nicolas, G., Guerrero, J., Sagues, C.: Multiple homographies with omnidirectional vision for robot homing. Robotics Auton. Syst. 58(6), 773–783 (2010b)Google Scholar
  20. 20.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comp. Vision 2(60), 91–110Google Scholar
  21. 21.
    Meer, P., Stewart, C.V., Tyler, D.E.: Robust computer vision. An interdisciplinary challenge. Comput. Vision Image Underst. 78, 1–7 (2000)Google Scholar
  22. 22.
    Pielot, M., Henze, N., Nickel, C., Menke, C., Samadi, S., Boll, S.: Evaluation of camera phone based interaction to access information related to posters. In: Proceedings of Mobile Interaction with the Real World (2008)Google Scholar
  23. 23.
    Roblee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the International Conference on Computer Vision, pp 2564–2571 (2011)Google Scholar
  24. 24.
    Rohs, M., Gfeller, B.: Using camera-equipped mobile phones for interacting with real-world objects. In: Advances in Pervasive Computing, pp 265–271 (2004)Google Scholar
  25. 25.
    Rousseeuw, P.J.: Least median of squares regression. J. Am. Statist. Assoc. 79, 871–880 (1984)Google Scholar
  26. 26.
    Takacs, G., Chandrasekhar, V., Gelfand, N., Xiong, Y., Chen, W.C., Bismpigiannis, T., Grzeszczuk, R., Pulli, K., Girod, B.: Outdoors augmented reality on mobile phone using loxel-based visual feature organization. In: Proceedings of the ACM International Conference on Multimedia Information Retrieval, MIR’08, pp. 427–434 (2008)Google Scholar
  27. 27.
    Taylor, S., Drummond, T.: Multiple target localisation at over 100 fps. In: Proceedings of the British Machine Vision Conference (2009)Google Scholar
  28. 28.
    Taylor, S., Rosten, E., Drummond, T.: Robust feature matching in 2.3ms. In: CVPR Workshop on Feature Detectors and Descriptors: The State Of The Art and Beyond (2009)Google Scholar
  29. 29.
    Tell, D., Carlsson, S.: Combining appearance and topology for wide baseline matching. In: Proceedings of the European Conference on Computer Vision, pp. 68–81 (2002)Google Scholar
  30. 30.
    Tordoff, B.J., Murray, D.W.: Guided-MLESAC faster image transform estimation by using matching priors. IEEE Trans. Pattern Anal. Machine Intel. 27(10), 1523–1535 (2005)Google Scholar
  31. 31.
    Torr, P., Zisserman, A.: MLESAC A new robust estimator with application to estimating image geometry. Comp. Vision Image Underst. 78, 138–156 (2000)Google Scholar
  32. 32.
    Torr, P.H.S., Davidson, C.: IMPSAC: Synthesis of importance sampling and random sample consensus. In: Proceedings of European Conference on Computer Vision, pp 819–83 (2000)Google Scholar
  33. 33.
    Wagner, D., Reitmayr, G., Mulloni, R., Drummond, T., Schmalstieg, D.: Pose tracking from natural features on mobile phones. In: Proc. IEEE and ACM International Symposium on Mixed and Augmented Reality (2008)Google Scholar
  34. 34.
    Xiong, Y., Pulli, K.: Fast image stitching and editing for panorama painting on mobile phones. In: IEEE International Workshop on Mobile Vision (2010) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pablo Márquez-Neila
    • 1
  • Javier López-Alberca
    • 1
  • José M. Buenaposada
    • 2
  • Luis Baumela
    • 1
  1. 1.Departamento de Inteligencia Artificial, Facultad de Informatica Universidad Politecnica de MadridBoadilla del MonteSpain
  2. 2.Departamento de Ciencias de la computacion, Escuela Tecnica Superior de Ingenieria Informatica Universidad Rey Juan CarlosMostolesSpain

Personalised recommendations