Journal of Real-Time Image Processing

, Volume 10, Issue 2, pp 219–237 | Cite as

A full linear 3 × 3 color correction between images

  • Michela LeccaEmail author
Special Issue


This work presents a novel color correction algorithm between images (or image regions) depicting the same environment. Color transfer is achieved by a linear full 3 × 3 mapping between the color responses. In particular, this linear map equalizes the colors of images of the same scene acquired under different illuminants and/or by different devices. Since the complexity of the proposed method is directly proportional to the number of picture pixels, color correction is performed in linear time within the pictures size.


RGB images Linear color variation Color distortions Color correction 



The author would like to express her gratitude to the following colleagues working at Fondazione Bruno Kessler, Trento, Italy: Carla Maria Modena, researcher in the group of Technologies for Vision, for the fruitful discussions about the theoretical part of this work; Dimitri Giordani, technician of the group of Technologies of Vision, for the acquisition of the images of database MBCam5; Alessandro Rizzi, technologist in the group of 3D Optical Metrology, and Stefano Girardi, technician at MtLab (Microfabrication and Testing Lab), for their help with the Macbeth Color Checker.


  1. 1.
    Barnard, K., Florian, C., Funt B.: Sensor sharpening for computational color constancy. J. Opt. Soc. Am. A 18, 2728–2743 (2001)CrossRefGoogle Scholar
  2. 2.
    Barnard, K., Cardei, V., Funt B.: A comparison of computational color constancy algorithms. Part I: Methodology and experiments with synthesized data. IEEE Trans. Image Process. 11(9), 972–984 (2002)CrossRefGoogle Scholar
  3. 3.
    Barnard, K., Cardei, V., Funt, B.: A comparison of computational color constancy algorithms. Part II: Experiments with image data. IEEE Trans. Image Process. 11(9), 985–996 (2002)CrossRefGoogle Scholar
  4. 4.
    Chong, H.Y., Gortler, S.J., Zickler, T.: A perception-based color space for illumination-invariant image processing. ACM Trans. Graph 27(3), 61:1–61:7 (2008) CrossRefGoogle Scholar
  5. 5.
    Finlayson, G., Hordley, S., Schaefer, G., Tian, G.Y.: Illuminant and device invariant colour using histogram equalisation. Pattern Recognit. 38(2), 179–190 (2005) CrossRefGoogle Scholar
  6. 6.
    Finlayson, G., Schaefer, G., Tian, G.Y.: The UEA uncalibrated colour image database. Technical Report SYS-C00-07, School of Information Systems, University of East Anglia, Norwich (2000)Google Scholar
  7. 7.
    Finlayson, G.D., Drew, M.S., Funt, B.V.: Color constancy generalized diagonal transforms suffice. J. Opt. Soc. Am. A 11(11), 3011–3019 (1994)CrossRefGoogle Scholar
  8. 8.
    Finlayson, G.D., Drew, M.S., Funt B.V.: Spectral sharpening: sensor transformations for improved color constancy. J. Opt. Soc. Am. A 11(5), 1553–1563 (1994)CrossRefGoogle Scholar
  9. 9.
    Funt, B., Barnard, K., Martin, L.: Is machine colour constancy good enough? In: Proceedings of the 5th European Conference on Computer Vision, pp. 445–459. Springer, Berlin (1998)Google Scholar
  10. 10.
    Funt, B., Jiang, H.: Non-von-kries 3-parameter color prediction. In: IS&T, SPIE Electronic Imaging 2003 Conference on Human Vision and Electronic Imaging VIII (2003)Google Scholar
  11. 11.
    Drew, S.M., Finlayson, G.D., Lu, C.: Entropy minimization for shadow removal. Int. J. Comput. Vision 85(1), 35–57 (2009)Google Scholar
  12. 12.
    Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. Int. J. Comput. Vision 61(1), 103–112 (2005)Google Scholar
  13. 13.
    Gijsenij, A., Gevers, T., van de Weijer J. Computational color constancy survey and experiments. Trans. Imaging Proc. 20(9), 2475–2489 (2011)Google Scholar
  14. 14.
    Heckbert, P.S.: Color image quantization for frame buffer display. ACM Comput. Graph. (ACM SIGGRAPH ’82 Proceedings), 16(3), 297–307 (1982)Google Scholar
  15. 15.
    Ilie, A., Welch, G.: Ensuring color consistency across multiple cameras. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, volume 2, pp. 1268 –1275 (2005)Google Scholar
  16. 16.
    Lecca, M., Messelodi, S.: Computing von Kries illuminant changes by piecewise inversion of cumulative color histogram. ELCVIA ISSN:1577-5097 8(2), 1–17 (2009)Google Scholar
  17. 17.
    Lecca, M., Messelodi, S.: Illuminant change estimation via minimization of color histogram divergence. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) Computational Color Imaging, pp. 41–50. Springer, Berlin (2009)Google Scholar
  18. 18.
    Marimont, D.H., Wandell, B.A.: Linear models of surface and illuminant spectra. J. Opt. Soc. Am. A 9, 1905–1913 (1992)Google Scholar
  19. 19.
    Moreno, A., Fernando, B., Kani, B., Saha, S., Karaoglu, S.: Color correction: a novel weighted von kries model based on memory colors. In Proceedings of the Third international conference on Computational color imaging, CCIW’11, pp. 165–175. Springer, Berlin (2011)Google Scholar
  20. 20.
    Nayar, S.K., Ikeuchi, K.: Takeo Kanade surface reflection: physical and geometrical perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 13, 611–634 (1991)CrossRefGoogle Scholar
  21. 21.
    Ojala, T., Topi, M., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex—new framework for empirical evaluation of texture analysis algorithms. In Proceedings of the 16 th ICPR’02, vol. 1, pp. 701–706. IEEE Computer Society (2002)Google Scholar
  22. 22.
    Pronobis, A., Christensen, H.I., Caputo, B.: Overview of the imageCLEF@ICPR 2010 robot vision track. In Proceedings of the 20th International Conference on Recognizing Patterns in Signals, Speech, Images, and Videos, ICPR’10, pp. 171–179. Springer, Berlin (2010)Google Scholar
  23. 23.
    Ratnasingam, S., McGinnity, T.M.: Chromaticity space for illuminant invariant recognition. IEEE Trans. Image Process. 21(8):3612–3623 (2012)Google Scholar
  24. 24.
    Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21, 34–41 (2001)CrossRefGoogle Scholar
  25. 25.
    Xu, D., Li, H.: Euclidean distance transform of digital images in arbitrary dimensions. In: Proceedings of the 7th Pacific Rim conference on Advances in Multimedia Information Processing, PCM’06, pp. 72–79. Springer, Berlin (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fondazione Bruno KesslerTrento Italy

Personalised recommendations