Journal of Real-Time Image Processing

, Volume 10, Issue 2, pp 387–401 | Cite as

CFA local binary patterns for fast illuminant-invariant color texture classification

Special Issue

Abstract

This paper focuses on the classification of color textures acquired by single-sensor color cameras under various illuminants. Local binary patterns (LBPs) are robust texture descriptors suited to such conditions. This property is still improved when LBPs are computed from the level ranks. Our main contribution is to avoid the demosaicing step that is classically performed in single-sensor color cameras to estimate color images from raw data. We instead compute rank-based LBPs from the color filter array image, in which each pixel is associated to a single color component. Experimental results achieved on a benchmark color texture database show the effectiveness of the proposed approach for texture classification, and a complexity study highlights its computational efficiency.

Keywords

Local binary patterns Color texture classification Illuminant invariance Bayer color filter array 

References

  1. 1.
    Bianconi, F., Harvey, R., Southam, P., Fernández, A.: Theoretical and experimental comparison of different approaches for color texture classification. J. Electron. Imaging 20(4), 043006-1–043006-17 (2011). doi:10.1117/1.3651210
  2. 2.
    Blas, M.R., Agrawal, M., Sundaresan, A., Konolige, K. Fast color/texture segmentation for outdoor robots. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS 2008), Nice, France, pp. 4078–4085 (2008). doi:10.1109/IROS.2008.4651086
  3. 3.
    Choi, J.Y., Ro, Y.M., Plataniotis, K.N.: Color local texture features for color face recognition. IEEE Trans. Image Process. 21(3), 1366–1380 (2012). doi:10.1109/TIP.2011.2168413 Google Scholar
  4. 4.
    Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P.F.: Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification. Mach. Graph. Vis. 22(6), 913–926 (2011). doi:10.1007/s00138-010-0253-4
  5. 5.
    Finlayson, G.D., Hordley, S.D., Schaefer, G., Tian, G.Y.: Illuminant and device invariant colour using histogram equalisation. Pattern Recogn. 38(2), 179–190 (2005). doi:10.1016/j.patcog.2004.04.010 Google Scholar
  6. 6.
    Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recogn 43(3), 706–719 (2010). doi:10.1016/j.patcog.2009.08.017 Google Scholar
  7. 7.
    Heckbert, P.: Color image quantization for frame buffer display. In: Thomas, J.J. (ed.) Proceedings of the 9th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’82), pp. 297–307. ACM, New York (1982). doi:10.1145/800064.801294
  8. 8.
    Heikkilä, M., Pietikäinen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intel. 28(4), 657–662 (2006). doi:10.1109/TPAMI.2006.68 Google Scholar
  9. 9.
    Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man Cybern. Part C 41(6), 765–781 (2011). doi:10.1109/TSMCC.2011.2118750 Google Scholar
  10. 10.
    Kang, Y., Kidono, K., Kimura, Y., Ninomiya, Y.: Texture-based objects recognition for vehicle environment perception using a multiband camera. In: Advances in Visual Computing. Lecture Notes in Computer Science, vol. 4842, pp. 582–591. Springer, Berlin (2007). doi:10.1007/978-3-540-76856-2_57
  11. 11.
    Lian, N.X., Chang, L., Tan, Y.P., Zagorodnov, V.: Adaptive filtering for color filter array demosaicking. IEEE Trans. Image Process. 16(10), 2515–2525 (2007). doi:10.1109/TIP.2007.904459. http://en.pudn.com/downloads142/sourcecode/graph/texture_mapping/detail619008_en.html Google Scholar
  12. 12.
    Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M., Li, S.Z.: Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’10), San Francisco, CA, USA, pp. 1301–1306 (2010). doi:10.1109/CVPR.2010.5539817
  13. 13.
    Liao, W.H.: Region description using extended local ternary patterns. In: Proceedings of the 20th IEEE International Conference on Pattern Recognition (ICPR’10), Istambul, Turkey, pp. 1003–1006 (2010)Google Scholar
  14. 14.
    Losson, O., Macaire, L., Yang, Y.: Comparison of color demosaicing methods. Adv. Imaging Electron Phys. 162, 173–265 (2010). doi:10.1016/S1076-5670(10)62005-8
  15. 15.
    Lukac, R.: Single-sensor imaging in consumer digital cameras: a survey of recent advances and future directions. J. Real Time Image Process. 1(1), 45–52 (2006). doi:10.1007/s11554-006-0003-z
  16. 16.
    Mäenpää, T., Pietikäinen, M.: Classification with color and texture: jointly or separately? Pattern Recogn. 37, 1629–1640 (2004). doi:10.1016/j.patcog.2003.11.011
  17. 17.
    Mäenpää, T., Viertola, J., Pietikäinen, M.: Optimising colour and texture features for real-time visual inspection. Pattern Anal. Appl. 6(3), 169–175(2003). doi:10.1007/s10044-002-0179-1
  18. 18.
    Menon, D., Calvagno, G.: Color image demosaicking: an overview. J. Signal Process. Image Commun. 26(8–9), 518–533 (2011). doi:10.1016/j.image.2011.04.003 Google Scholar
  19. 19.
    Muselet, D., Macaire, L. Histogram of fuzzy ranks for object recognition across illumination changes. In: Proceedings of the 3rd European Conference on Colour in Graphics, Image and Vision (CGIV’06), Leeds, UK, pp. 220–225 (2006)Google Scholar
  20. 20.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996). doi:10.1016/0031-3203(95)00067-4 Google Scholar
  21. 21.
    Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), vol. 1, pp. 701–706 (2002a). http://www.outex.oulu.fi/temp/
  22. 22.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intel. 24(7), 971–987 (2002b). doi:10.1109/TPAMI.2002.1017623
  23. 23.
    Palm, C.: Color texture classification by integrative co-occurrence matrices. Pattern Recogn. 37(5), 965–976 (2004). doi:10.1016/j.patcog.2003.09.010
  24. 24.
    Pan, H., Xia, S.Y., Jin, L.Z., Xia, L.Z.: Illumination invariant face recognition based on improved local binary pattern. In: Proceedings of the 30th Chinese Control Conference (CCC’2011), Yantai, China, pp. 3268–3272 (2011)Google Scholar
  25. 25.
    Pietikäinen, M., Mäenpää, T.: Texture analysis with local binary patterns. In: Chen, C.H., Wang, P.S.P. (eds) The Handbook of Pattern Recognition and Computer Vision, 3rd edn., pp. 197–216. World Scientific Publishing, Singapore (2005). doi:10.1142/9789812775320_0011
  26. 26.
    Pietikäinen, M., Mäenpää, T., Viertola, J. Color texture classification with color histograms and local binary patterns. In: Proceedings of the 2nd International Workshop on Texture Analysis and Synthesis (TEXTURE 2002), Copenhagen, Denmark, pp. 109–112 (2002)Google Scholar
  27. 27.
    Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer vision using local binary patterns. In: Computational Imaging and Vision, vol. 40. Springer, London (2011). doi:10.1007/978-0-85729-748-8
  28. 28.
    Porebski, A., Vandenbroucke, N., Macaire, L.: Haralick feature extraction from LBP images for color texture classification. In: Proceedings of the International Workshops on Image Processing Theory, Tools and Applications (IPTA’08), Sousse, Tunisie, pp. 1–8 (2008). doi:10.1109/IPTA.2008.4743780
  29. 29.
    Rasband, W.S.: Image J. US National Institutes of Health, Bethesda (1997–2012). http://imagej.nih.gov/ij/
  30. 30.
    Rubner, Y., Puzicha, J., Tomasi, C., Buhmann, J.M.: Empirical evaluation of dissimilarity measures for color and texture. Comput. Vis. Image Underst. 84(1), 25–43 (2001). doi:10.1006/cviu.2001.0934 Google Scholar
  31. 31.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intel. 32(9), 1582–1596 (2010). doi:10.1109/TPAMI.2009.154 Google Scholar
  32. 32.
    Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991). doi:10.1007/BF00130487 Google Scholar
  33. 33.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010). doi:10.1109/TIP.2010.2042645
  34. 34.
    Zhao, Y.: Theories and applications of LBP: a survey. In: Huang, D.S., Gan, Y., Gupta, P., Gromiha, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, Lecture Notes in Computer Science, vol. 6839, pp. 112–120. Springer, Berlin (2012). doi:10.1007/978-3-642-25944-9_15
  35. 35.
    Zhu, C., Bichot, C.E., Chen, L.: Multi-scale color local binary patterns for visual object classes recognition. In: Proceedings of the 20th IEEE International Conference on Pattern Recognition (ICPR 2010), Istambul, Turkey, pp. 3065–3068 (2010). doi:10.1109/ICPR.2010.751

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire LAGIS, UMR CNRS 8219, Université Lille 1 - Sciences et Technologies Cité ScientifiqueVilleneuve d’AscqFrance 

Personalised recommendations