Journal of Real-Time Image Processing

, Volume 9, Issue 4, pp 635–646 | Cite as

Fall detection system using Kinect’s infrared sensor

  • Georgios Mastorakis
  • Dimitrios Makris
Original Research Paper


This paper presents a novel fall detection system based on the Kinect sensor. The system runs in real-time and is capable of detecting walking falls accurately and robustly without taking into account any false positive activities (i.e. lying on the floor). Velocity and inactivity calculations are performed to decide whether a fall has occurred. The key novelty of our approach is measuring the velocity based on the contraction or expansion of the width, height and depth of the 3D bounding box. By explicitly using the 3D bounding box, our algorithm requires no pre-knowledge of the scene (i.e. floor), as the set of detected actions are adequate to complete the process of fall detection.


Kinect Fall detection Home assistance Real-time processing 3D bounding box analysis 



We thank Dr. Jesus Martinez del Rincon and Andy Strong for their invaluable assistance in setting up the experimental environment for the capturing sessions.

Supplementary material

AVI (465 KB)

AVI (995 KB)

AVI (671 KB)

AVI (1591 KB)

AVI (411 KB)

AVI (559 KB)

AVI (420 KB)

AVI (1941 KB)

AVI (773 KB)

AVI (786 KB)

AVI (491 KB)

AVI (563 KB)


  1. 1.
    BBC News-Microsoft Kinect ‘fastest-selling device on record’. Last accessed 17 May 2011
  2. 2.
    Openkinect. Last accessed 17 May 2011
  3. 3.
    OpenNI. Last accessed 17 May 2011
  4. 4.
    Primesense. Last accessed 17 May 2011
  5. 5.
    Alwan, M., Rajendran, P., Kell, S., Mack, D., Dalal, S., Wolfe, M., Felder, R.: A smart and passive floor-vibration based fall detector for elderly. In: IEEE Proceedings of International Conference on Information and Communication Technologies: From Theory to Applications, pp. 1003–1007 (2006)Google Scholar
  6. 6.
    Auvinet, E., Multon, F., Saint-Arnaud, A., Rousseau, J., Meunier, J.: Fall detection with multiple cameras: an occlusion-resistant method based on 3-d silhouette vertical distribution. IEEE Trans. Inf. Technol. Biomed. 15(2), 290–300 (2011)CrossRefGoogle Scholar
  7. 7.
    Bourke, A., O’Brien, J., Lyons, G.: Evaluation of a threshold based tri-axial accelerometer fall detection algorithm. Gait Posture 26(2), 194–199 (2007)CrossRefGoogle Scholar
  8. 8.
    Cucchiara, R., Prati, A., Vezzani, R.: An intelligent surveillance system for dangerous situation detection in home environments. Intell. Artif. 1(1), 11–15 (2004)Google Scholar
  9. 9.
    Cucchiara, R., Prati, A., Vezzani, R.: A multi-camera vision system for fall detection and alarm generation. Exp. Syst. J. 24, 334–345 (2007)CrossRefGoogle Scholar
  10. 10.
    Deandrea, S., Lucenteforte, E., Bravi, F., Foschi, R., La Vecchia, C., Negri, E.: Risk factors for falls in community-dwelling older people: a systematic review and meta-analysis. Epidemiology 21(5), 658–668 (2010)CrossRefGoogle Scholar
  11. 11.
    Diraco, G., Leone, A., Siciliano, P.: An active vision system for fall detection and posture recognition in elderly healthcare. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1536–1541 (2010)Google Scholar
  12. 12.
    Donald, I., Bulpitt, C.: The prognosis of falls in elderly people living at home. Age Ageing 28(2), 121–5 (1999)CrossRefGoogle Scholar
  13. 13.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Foroughi, H., Aski, B., Pourreza, H (2008) Intelligent video surveillance for monitoring fall detection of elderly in home environments. In: International Conference on Computer and Information Technology, pp. 219–224Google Scholar
  15. 15.
    Hori, T., Nishida, Y., Aizawa, H.: Sensor network for supporting elderly care home. In: IEEE Proceedings of Sensors 2, 575–578 (2004)Google Scholar
  16. 16.
    Jansen, B., Deklerck, R.: Context aware inactivity recognition for visual fall detection. In: Proceedings of International Conference on Pervasive Computing Technologies for Healthcare, pp. 1–4 (2006)Google Scholar
  17. 17.
    Jansen B., Temmermans F., Deklerck R.: 3D human pose recognition for home monitoring of elderly. In: IEEE International Conference of the Engineering in Medicine and Biology Society, pp. 4049–4051 (2007)Google Scholar
  18. 18.
    Kim, K.J., Ashton-Miller, J.A.: Biomechanics of fall arrest using the upper extremity: age differences. Clin. Biomech. 18(4), 311–318 (2003)CrossRefGoogle Scholar
  19. 19.
    Leclercq, S.: In-company same- and low-level falls: from an understanding of such accidents to their prevention. Int. J. Ind. Ergonomics 25(1), 59–67 (2000)CrossRefGoogle Scholar
  20. 20.
    Li, Q., Stankovic, J., Hanson, M., Barth, A., Lach, J., Zhou, G.: Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. In: Proceedings of International Workshop on Wearable and Implantable Body Sensor Networks, pp. 138–143 (2009)Google Scholar
  21. 21.
    Londei, S.T., Rousseau, J., Ducharme, F., St-Arnaud, A., Meunier, J., Saint-Arnaud, J., Giroux, F.: An intelligent videomonitoring system for fall detection at home: perceptions of elderly people. J. Telemed. Telecare 15, 383–390 (2009)CrossRefGoogle Scholar
  22. 22.
    Popescu, M., Li, Y., Skubic, M., Rantz, M.: An acoustic fall detector system that uses sound height information to reduce the false alarm rate. In: IEEE International Conference of the Engineering in Medicine and Biology Society, pp. 4628–4631 (2008)Google Scholar
  23. 23.
    Rougier, C., Auvinet, E., Rousseau, J., Mignotte, M., Meunier, J.: Fall detection from depth map video sequences. In: Abdulrazak, B., Giroux, S., Bouchard, B., Pigot, H., Mokhtari, M. (eds.) Toward Useful Services for Elderly and People with Disabilities. Lecture Notes in Computer Science, vol. 6719, pp. 121–128. Springer, Berlin (2011)Google Scholar
  24. 24.
    Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Monocular 3D head tracking to detect falls of elderly people. In: IEEE International Conference of the Engineering in Medicine and Biology Society, pp. 6384–6387 (2006)Google Scholar
  25. 25.
    Schumer, M.A., Steiglitz, K.: Adaptive step size random search. IEEE Trans. Autom. Control 13(3), 270–276 (1968)Google Scholar
  26. 26.
    Sixsmith, A., Johnson, N.: A smart sensor to detect the falls of the elderly. IEEE Pervasive Comput 3(2), 42–47 (2004)CrossRefGoogle Scholar
  27. 27.
    Toreyin, B.U., Dedeoglu, Y., Cetin, A.E.: HMM based falling person detection using both audio and video. In: Sebe, N., Lew, M.S., Huang, T.S. (eds.) IEEE International Workshop on Human–Computer Interaction. Lecture Notes in Computer Science, vol. 3766, pp. 211–220. Springer, Berlin (2005)Google Scholar
  28. 28.
    Vishwakarma, V., Mandal, C., Sural, S.: Automatic detection of human fall in video. In: Proceedings of International Conference on Pattern Recognition and Machine Intelligence, PReMI’07, pp. 616–623. Springer, Berlin (2007)Google Scholar
  29. 29.
    Welch, G., Bishop, G.: An Introduction to the Kalman Filter. University of North Carolina at Chapel Hill (1995)Google Scholar
  30. 30.
    Wu, G.: Distinguishing fall activities from normal activities by velocity characteristics. J. Biomech. 33(11), 1497–1500 (2000)CrossRefGoogle Scholar
  31. 31.
    Xiao, Y., Siebert, P., Werghi, N.: A discrete reeb graph approach for the segmentation of human body scans. In: IEEE Proceedings of International Conference on 3-D Digital Imaging and Modeling (2003)Google Scholar
  32. 32.
    Zhao, J., Katupitiya, J., Ward, J.: Global correlation based ground plane estimation using v-disparity image. In: IEEE Intl. Conf. on Rob. and Aut., pp. 529–534 (2007)Google Scholar
  33. 33.
    Zouba, N., Boulay, B., Bremond, F., Thonnat, M.: Cognitive vision. In: Monitoring Activities of Daily Living (ADLs) of Elderly Based on 3D Key Human Postures, pp. 37–50. Springer, Berlin (2008)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Faculty of Computing, Information Systems and Mathematics, Digital Imaging Research CentreKingston UniversitySurreyUK

Personalised recommendations