Journal of Real-Time Image Processing

, Volume 9, Issue 4, pp 673–688 | Cite as

3D modelling of laser scanned and photogrammetric data for digital documentation: the Mosteiro da Batalha case study

  • Adriano Oliveira
  • João F. Oliveira
  • João M. Pereira
  • Bruno R. de Araújo
  • João Boavida
Survey Paper


Advances in both terrestrial laser scanning hardware and photogrammetric systems combined are creating increasingly precise and rich 3D coloured data. In this article we show how computer graphics and visualization techniques have played an important role in real-time visualization, data management, modelling, and data fusion in an increasing number of applications such as surveying engineering, structure analysis, architecture, archaeology and cultural heritage. Specifically, we describe the typical modelling steps involved in the creation of a range of digital documents provided by the 3D digitization company Artescan to customers. We present how these modelling steps were applied in the context of creating digital documents used in the preservation of Mosteiro da Batalha.


Laser scanning Photogrammetry 3D modelling CAD Orthophoto Virtual reality 



This work was supported by FCT (INESC-ID multiannual funding) through the PIDDAC Program funds. All laser scanning and modelling presented in this article were carried out by Artescan, 3D Scanning. The collaboration between Artescan and INESC-ID Lisboa was partially funded by Artescan and by the Portuguese Foundation for Science and Technology (FCT), VIZIR project grant (PTDC/EIA/66655/2006). In addition, Bruno Araújo would like to thank FCT for doctoral grant reference SFRH/BD/31020/2006. Finally, we would like to thank Dr. Margarita Rova for invaluable comments.


  1. 1.
    Ahrens, J., Geveci, B., Law, C.: ParaView: An End-user Tool for Large Data Visualization. Visualization Handbook. Elsevier (2005)Google Scholar
  2. 2.
    Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-Points congruent sets for robust pairwise surface registration. In: ACM SIGGRAPH 2008 papers, ACM, pp. 85:1–85:10 (2008)Google Scholar
  3. 3.
    Alba, M., Scaioni, M.: Comparison of techniques for terrestrial laser scanning data georeferencing applied to 3-D modelling of cultural heritage. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5/W47), (on CD-ROM, p. 8 (2007)Google Scholar
  4. 4.
    Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, ACM, SIGGRAPH ’98, pp. 415–421 (1998)Google Scholar
  5. 5.
    Beinat, A., Crosilla, F. Generalized procrustes analysis for size and shape 3-D object reconstruction. In: Proceedings of Optical 3D Measurement Techniques, pp. 345–353 (2001)Google Scholar
  6. 6.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)CrossRefGoogle Scholar
  7. 7.
    Boavida, J., Oliveira, A., Berberan, A.: Dam monitoring using combined terrestrial imaging systems. Civil Engineering Surveyor, pp. 33–38 (2009)Google Scholar
  8. 8.
    Borgeat, L., Godin, G., Blais, F., Massicotte, P., Lahanier, C.: Gold: interactive display of huge colored and textured models. In: ACM SIGGRAPH 2005 Papers, ACM, pp. 869–877 (2005)Google Scholar
  9. 9.
    Cignoni, P., Montani, C., Rocchini, C., Scopigno, R.: External memory management and simplification of huge meshes. IEEE Trans. Vis. Comput. Graphics 9, 525–537 (2003)CrossRefGoogle Scholar
  10. 10.
    Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: Meshlab: an open-source mesh processing tool. In: Sixth Eurographics Italian Chapter Conference, pp. 129–136, (2008)
  11. 11.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH ’96, ACM, pp. 303–312 (1996)Google Scholar
  12. 12.
    Davis, J., Marschner, S.R., Garr, M., Levoy, M. (2002) Filling holes in complex surfaces using volumetric diffusion. In: 3DPVT, IEEE Computer Society, pp. 428–438Google Scholar
  13. 13.
    Garland, M., Heckbert, PS.: Surface simplification using quadric error metrics. In: SIGGRAPH ’97, ACM Press/Addison-Wesley, pp. 209–216 (1997)Google Scholar
  14. 14.
    Gobbetti, E., Marton, F.: Far voxels: a multiresolution framework for interactive rendering of huge complex 3D models on commodity graphics platforms. In: ACM SIGGRAPH 2005 Papers, ACM, pp. 878–885 (2005)Google Scholar
  15. 15.
    Gruen, A., Akca, D.: Least squares 3D surface matching. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(5/W16), (on CD-ROM (2004)Google Scholar
  16. 16.
    International Electrotechnical Commission: International standard iec 60825-1 corr1, safety of laser products, 1st August 2008 (2008).
  17. 17.
    International Society for Photogrammetry and Remote Sensing, Commission V: Close-range sensing: Analysis and applications, working group v/3: Terrestrial laser scanning and 3D imaging. (2009)
  18. 18.
    Isenburg, M., Liu, Y., Shewchuk, J., Snoeyink, J.: Streaming computation of Delaunay triangulations. ACM Trans. Graph. 25:1049–1056 (2006). Google Scholar
  19. 19.
    Large, A.R.G., Heritage, G.L., Charlton, M.E.: Laser Scanning: The Future, Wiley-Blackwell, pp. 262–271 (2009)Google Scholar
  20. 20.
    Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital Michelangelo project: 3D scanning of large statues. In: SIGGRAPH ’00, ACM Press/Addison-Wesley, pp. 131–144 (2000)Google Scholar
  21. 21.
    Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close Range Photogrammetry Principles, Methods and Applications. Whittles, Scotland (2006)Google Scholar
  22. 22.
    Oliveira, A., Boavida, J., Cortesão, L., Gomes, S.: Laser scanning aplicado ao levantamento do património edificado—o caso de estudo do palácio de monserrate. Revista Arte & Construção, pp. 44–48 (2009)Google Scholar
  23. 23.
    Oliveira, J.F., Steed, A.: Determining orientation of laser scanned surfaces. In: SIACG, pp. 281–288 (2002)Google Scholar
  24. 24.
    Petzet, M.: Principles of preservation: an introduction to the international charters for conservation and restoration 40 years after the venice charter. In: International Charters for Conservation and Restoration, Monuments & Sites, vol. I, ICOMOS, München, pp. 7–29, (2004).
  25. 25.
    Pfeifer, N., Briese, C.: Geometrical aspects of airborne and terrestrial laser scanning. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, part 3/W52, p 311 (2007)Google Scholar
  26. 26.
    Rieger, P., Studnicka, N., Pfenning-bauer, M., Ullrich, A. Advances in mobile laser scanning data acquisition. In: FIG Congress 2010. Facing the Challenges Building the Capacity (2010)Google Scholar
  27. 27.
    Rusinkiewicz, S., Levoy, M.: Qsplat: A multiresolution point rendering system for large meshes. In: SIGGRAPH ’00, ACM Press/Addison-Wesley, pp. 343–352 (2000)Google Scholar
  28. 28.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: International Conference on 3-D Digital Imaging and Modeling (2001)Google Scholar
  29. 29.
    Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th edn. Kitware Inc. (2006)Google Scholar
  30. 30.
    Taubin, G., Zhang, T., Golub, G.H.: Optimal surface smoothing as filter design. In: Proceedings of the 4th European Conference on Computer Vision, vol. I, Springer, London, UK, ECCV ’96, pp. 283–292 (1996)Google Scholar
  31. 31.
    Thies, M., Spiecker, H.: Evaluation and future prospects of terrestrial laser-scanning for standardized forest inventories. In: Proceedings of the ISPRS Working Group VIII/2 Laser-Scanners for Forest and Landscape Assessment (2004)Google Scholar
  32. 32.
    Ullrich, A., Pfennigbauer, M.: Echo digitization and waveform analysis in airborne and terrestrial laser scanning. In: Fritsch, D. (ed.) Photogrammetric Week ’11, pp. 217–228 (2011)Google Scholar
  33. 33.
    Wand, M., Berner, A., Bokeloh, M., Fleck, A., Hoffmann, M., Jenke, P.: The xgrt system. (2007).
  34. 34.
    Wand, M., Berner, A., Bokeloh, M., Fleck, A., Hoffmann, M., Jenke, P., Maier, B., Staneker, D., Schilling, A.: Interactive editing of large point clouds. In: Chen B, Zwicker M, Botsch M, Pajarola R (eds.) Symposium on Point-Based Graphics 2007 : Eurographics/IEEE VGTC Symposium Proceedings, Prague, Czech Republic, pp. 37–46 (2007)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Adriano Oliveira
    • 1
  • João F. Oliveira
    • 2
  • João M. Pereira
    • 3
  • Bruno R. de Araújo
    • 3
  • João Boavida
    • 1
  1. 1.Artescan, 3D Scanning IPN IncubadoraCoimbraPortugal
  2. 2.Escola Superior de Tecnologia e Gestão Instituto Politécnico de Portalegre Lugar da AbadessaPortalegrePortugal
  3. 3.VIMMI Group, INESC-ID, Department of Information Systems and Computer ScienceIST/Technical University of LisbonLisbonPortugal

Personalised recommendations