Advertisement

Journal of Real-Time Image Processing

, Volume 8, Issue 4, pp 353–368 | Cite as

Real-time motion detection based on SW/HW-codesign for walking rescue robots

  • Johny Paul
  • Andreas Laika
  • Christopher Claus
  • Walter Stechele
  • Adam El Sayed Auf
  • Erik Maehle
Special Issue
  • 431 Downloads

Abstract

In a rescue operation walking robots offer a great deal of flexibility in traversing uneven terrain in an uncontrolled environment. For such a rescue robot, each motion is a potential vital sign and the robot should be sensitive enough to detect such motion, at the same time maintaining high accuracy to avoid false alarms. However, the existing techniques for motion detection have severe limitations in dealing with strong levels of ego-motion on walking robots. This paper proposes an optical flow-based method for the detection of moving objects using a single camera mounted on a hexapod robot. The proposed algorithm estimates and compensates ego-motion to allow for object detection from a continuously moving robot, using a first-order-flow motion model. Our algorithm can deal with strong rotation and translation in 3D, with four degrees of freedom. Two alternative object detection methods using a 2D-histogram based vector clustering and motion-compensated frame differencing, respectively, are examined for the detection of slow- and fast-moving objects. The FPGA implementation with optimized resource utilization using SW/HW codesign can process video frames in real-time at 31 fps. The new algorithm offers a significant improvement in performance over the state-of-the-art, under harsh environment and performs equally well under smooth motion.

Keywords

Embedded systems FPGA-based real-time processing Software/hardware codesign Optical flow Egomotion estimation Moving object detection 

Supplementary material

11554_2011_239_MOESM1_ESM.avi (3.1 mb)
AVI (3172 KB)
11554_2011_239_MOESM2_ESM.avi (18.5 mb)
AVI (18908 KB)

AVI (14408 KB)

AVI (4539 KB)

AVI (15308 KB)

AVI (18908 KB)

11554_2011_239_MOESM7_ESM.avi (6.3 mb)
AVI (6442 KB)

References

  1. 1.
    Alireza, B., Shahrokni, A., Motamedi, S.A.: A robust vision-based moving target detection and tracking system. In: Proceedings of Image and Vision Computing Conference (IVCNZ2001) (2001)Google Scholar
  2. 2.
    Armangué, X., Araújo, H., Salvi, J.: A review on egomotion by means of differential epipolar geometry applied to the movement of a mobile robot. Pattern Recognit. 36(12), 2927–2944 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Battiato, S., Gallo, G., Puglisi, G., Scellato, S.: Sift features tracking for video stabilization. In: 14th International Conference on Image Analysis and Processing, 2007 (ICIAP 2007), pp. 825–830. IEEE (2007)Google Scholar
  4. 4.
    Claus, C., Laika, A., Jia, L., Stechele, W.: High performance FPGA based optical flow calculation using the census transformation. IEEE Intelligent Vehicle Symposium (2009)Google Scholar
  5. 5.
    DeHon, A.: The density advantage of configurable computing. IEEE Comput. 33(4), 41–49 (2000)CrossRefGoogle Scholar
  6. 6.
    Fawcett, T.: An introduction to ROC analysis. Technical report, Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA 94306, USA (2005)Google Scholar
  7. 7.
    Feng, L., Chen, B.M., Lee, T.H.: Robust vision-based target tracking control system for an unmanned helicopter using feature fusion. In: IAPR Conference on Machine Vision Applications, pp. 398–401 (2009)Google Scholar
  8. 8.
    Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gonzalez, R., Woods, R., Eddins, S.: Digital image processing using MATLAB. Prentice Hall, Upper Saddle River (2004)Google Scholar
  10. 10.
    Grozea, C., Bankovic, Z., Laskov, P.: FPGA vs. multi-core CPUs vs. GPUs: hands-on experience with a sorting application. In: Facing the Multi-Core Challenge: Conference for Young Scientists at the Heidelberger Akademie der Wissenschaften (2010)Google Scholar
  11. 11.
    Jacoff, A., Messina, E., Weiss, B.A., Tadokoro, S., Nakagawa, Y.: Test arenas and performance metrics for urban search and rescue robots. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robot and Systems, Las Vegas, NV, October 27–31, 2003Google Scholar
  12. 12.
    Jung, B., Sukhatme, G.: Detecting moving objects using a single camera on a mobile robot in an outdoor environment. In: International Conference on Intelligent Autonomous Systems, pp. 980–987 (2004)Google Scholar
  13. 13.
    Laika, A.: Monoscopic object-recognition for advanced driver assistance systems. PhD thesis, TUM (2011)Google Scholar
  14. 14.
    Milella, A., Siegwart, R.: Stereo-based ego-motion estimation using pixel tracking and iterative closest point. In: Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (2006)Google Scholar
  15. 15.
    Murray, D., Basu, A.: Motion tracking with an active camera. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 449–459 (1994). doi: 10.1109/34.291452 CrossRefGoogle Scholar
  16. 16.
    Sachs, D., Nasiri, S., Goehl, D.: Image stabilization technology overview. InvenSense Whitepaper (2006)Google Scholar
  17. 17.
    Scaramuzza, D., Fraundorfer, F., Siegwart, R.: Real-time monocular visual odometry for on-road vehicles with 1-point ransac. In: IEEE International Conference on Robotics and Automation, 2009 (ICRA’09), pp. 4293–4299. IEEE (2009)Google Scholar
  18. 18.
    Se, S., Lowe, D., Little, J.: Vision-based mobile robot localization and mapping using scale-invariant features. In: IEEE International Conference on Robotics and Automation, 2001 (ICRA2001), vol. 2, pp. 2051–2058. IEEE (2001)Google Scholar
  19. 19.
    Stein, F.: Efficient computation of optical flow using the census transform. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM-Symposium. Lecture Notes in Computer Science, vol. 3175, pp. 79–86. Springer, Tübingen (2004)Google Scholar
  20. 20.
    Surmann, H., Lingemann, K., Nüchter, A., Hertzberg, J.: A 3D laser range finder for autonomous mobile robots. In: Proceedings of the 32nd ISR (International Symposium on Robotics), Citeseer, vol. 19, pp. 153–158 (2001)Google Scholar
  21. 21.
    Tunley, H., Young, D.: First order optic flow from log-polar sampled images. In: Computer Vision-ECCV’94. Lecture Notes in Computer Science, vol. 800, pp. 132–137. Springer, Berlin (1994). doi: 10.1007/3-540-57956-7_14

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Johny Paul
    • 1
  • Andreas Laika
    • 1
  • Christopher Claus
    • 1
  • Walter Stechele
    • 1
  • Adam El Sayed Auf
    • 2
  • Erik Maehle
    • 2
  1. 1.Institute for Integrated Systems, Technische Universität MünchenMunichGermany
  2. 2.Institute of Computer Engineering, Universität zu LübeckLübeckGermany

Personalised recommendations