Journal of Real-Time Image Processing

, Volume 6, Issue 1, pp 15–22 | Cite as

Real time ultrasound image denoising

  • Fernanda Palhano Xavier de Fontes
  • Guillermo Andrade Barroso
  • Pierrick Coupé
  • Pierre Hellier
Special Issue


Image denoising is the process of removing the noise that perturbs image analysis methods. In some applications like segmentation or registration, denoising is intended to smooth homogeneous areas while preserving the contours. In many applications like video analysis, visual servoing or image-guided surgical interventions, real-time denoising is required. This paper presents a method for real-time denoising of ultrasound images: a modified version of the NL-means method is presented that incorporates an ultrasound dedicated noise model, as well as a GPU implementation of the algorithm. Results demonstrate that the proposed method is very efficient in terms of denoising quality and is real-time.


Image denoising Ultrasound imaging Non-local means GPGPU 


  1. 1.
    Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detection by nonlinear diffusion, II. SIAM J. Numer. Anal. 29, 845–866 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Argenti, F., Torricelli, G.: Speckle suppression in ultrasonic images based on undecimated wavelets. EURASIP J. Adv. Signal Process. 2003(5), 470–478 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cates, J.E., Lefohn, A.E., Whitaker, R.T.: Gist: an interactive, gpu-based level set segmentation tool for 3D medical images. Med. Image Anal. 8(3), 217–231 (2004)CrossRefGoogle Scholar
  5. 5.
    Chan, T.F., Osher, S., Shen, J.: The digital TV filter and nonlinear denoising. IEEE Trans. Image Process. 10(2), 231–241 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Chen, Y., Vemuri, B.C., Wang, L.: Image denoising and segmentation via nonlinear diffusion. Comput. Math. Appl. 39(5–6), 131–150 (2000)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Coupé, P., Hellier, P., Kervrann, C., Barillot, C.: Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 18(10), 2221–2229 (2009)CrossRefGoogle Scholar
  8. 8.
    Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise non local means denoising filter for 3D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008)CrossRefGoogle Scholar
  9. 9.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Frost, V.S., Stiles, J.A., Shanmugan, K.S., Holtzman, J.C.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 2, 157–165 (1982)CrossRefGoogle Scholar
  11. 11.
    Hao, X., Gao, S., Gao, X.: A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing. IEEE Trans. Med. Imaging 18(9), 787–794 (1999)CrossRefGoogle Scholar
  12. 12.
    Huhle, B., Schairer, T., Jenke, P., Straßer, W.: Robust non-local denoising of colored depth data. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPR Workshops 2008, pp. 1–7 (2008)Google Scholar
  13. 13.
    Jensen, J.A.: Field: A program for simulating ultrasound systems. Med. Biol. Eng. Comput. 34, 351–353 (1996)CrossRefGoogle Scholar
  14. 14.
    Kervrann, C., Boulanger, J., Coupé, P.: Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. In: Proceedings of Conference on Scale-Space and Variational Methods (SSVM’ 07), pp. 520–532, Ischia, Italy, June 2007Google Scholar
  15. 15.
  16. 16.
    Krissian, K., Vosburgh, K., Kikinis, R., Westin, C.-F.: Speckle-constrained anisotropic diffusion for ultrasound images. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005)Google Scholar
  17. 17.
    Kuan, D.T., Sawchuck, A.A., Strand, T.C., Chavel, P.: Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Mach. Intell. 7(2), 165–177 (1985)CrossRefGoogle Scholar
  18. 18.
    Kubias, A., Deinzer, F., Feldmann, T., Paulus, D., Schreiber, B., Brunner, T.: 2D/3D image registration on the gpu. Pattern Recognit. Image Anal. 18(3), 381–389 (2008)CrossRefGoogle Scholar
  19. 19.
    Lee, J.S.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–168 (1980)CrossRefGoogle Scholar
  20. 20.
    Loupas, T., McDicken, W.N., Allan, P.L.: An adaptive weighted median filter for speckle suppression in medical ultrasound image. IEEE T. Circ. Syst. 36, 129–135 (1989)CrossRefGoogle Scholar
  21. 21.
    Motwani, M.C., Gadiya, M.C., Motwani, R.C., Harris, F.C. Jr.: Survey of image denoising techniques. In: Proceedings of GSPx, pp. 27–30. Citeseer (2004)Google Scholar
  22. 22.
    Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  24. 24.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHCrossRefGoogle Scholar
  25. 25.
    Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical (BV, L 2) decompositions. Multiscale Model. Simul. 2(4), 554–579 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tao, Z., Tagare, H.D., Beaty, J.D.: Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images. IEEE Trans. Med. Imaging 25(11), 1483–1491 (2006)CrossRefGoogle Scholar
  27. 27.
    Tay, P.C., Acton, S.T., Hossack, J.A.: A stochastic approach to ultrasound despeckling. In: Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium, pp. 221–224 (2006)Google Scholar
  28. 28.
    Tay, P.C., Acton, S.T., Hossack, J.A.: Ultrasound despeckling using an adaptive window stochastic approach. In: IEEE International Conference on Image Processing, pp. 2549–2552 (2006)Google Scholar
  29. 29.
    Wachowiak, M.P., Elmaghraby, A.S., Smolíkova, R., Zurada, J.M.: Classification and estimation of ultrasound speckle noise with neural networks. In: IEEE International Symposium on Bio-Informatics and Biomedical Engineering (BIBE’00), pp. 245–252 (2000)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Fernanda Palhano Xavier de Fontes
    • 1
  • Guillermo Andrade Barroso
    • 1
  • Pierrick Coupé
    • 1
  • Pierre Hellier
    • 1
  1. 1.INRIA Centre de Recherche Rennes Bretagne AtlantiqueRennes CedexFrance

Personalised recommendations