Journal of Real-Time Image Processing

, Volume 5, Issue 3, pp 141–148 | Cite as

Low bit depth representation motion estimation algorithms: a comparative study

  • Athanasios VlachosEmail author
  • Vassilis Fotopoulos
  • Athanassios N. Skodras
Survey Paper


A comparative study of low complexity motion estimation algorithms is presented. The algorithms included in the study are the 1-bit transform, the 2-bit transform, the constrained 1-bit transform and the multiplication free 1-bit transform which are using different motion estimation strategies compared to standard exhaustive search algorithm-mean absolute difference or similar combinations. These techniques provide better performance in terms of computational load compared to traditional algorithms. Although the accuracy of motion compensation is only slightly lower comparing to the other techniques, results in terms of objective quality (peak signal-to-noise ratio) and entropy are comparable. This fact, nominates them as suitable candidates for inclusion in embedded devices applications where lower complexity translates to lower power consumption and consequently improved device autonomy.


Video compression Motion estimation 



1-bit transform


2-bit transform


Constrained 1-bit transform


Exhaustive search algorithm


Mean absolute difference


Mean square error


Multiplication free 1-bit transform


Peak signal-to-noise ratio



This work was funded by the European Union—European Social Fund (75%), the Greek Government—Ministry of Development—General Secretariat of Research and Technology (25%) and the Private Sector in the frames of the European Competitiveness Programme (Third Community Support Framework, Measure 8.3, programme ÐÅÍÅÄ, contract no. 03ÅÄ832).


  1. 1.
    Kuhn, P.M.: Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion Estimation. Kluwer, Norwell (1999)zbMATHGoogle Scholar
  2. 2.
    Fotopoulos, V., Skodras, A. N.: sMAE: an improved block matching criterion. In: Proceedings of the Fifth IEEE International Conference on Electronics, Circuits and Systems (ICECS‘98), vol. 3, pp. 519–522, Lisbon, Portugal, 7–10 Sept 1998Google Scholar
  3. 3.
    Huang, Y.-U., Chen, C.-Y., Tsai, C.-H., Shen, C.-F., Chen, L.-G.: Survey on block matching motion estimation algorithms and architectures with new results. J. VLSI Signal Process. 42(3), 297–320 (2006)zbMATHCrossRefGoogle Scholar
  4. 4.
    Koga, T., Linuma, K., Hirano, A., Lijima, Y., Ishiguro, T.: Motion-compensated interframe coding for video conferencing. In: Proceedings of NTC’81, pp. G5.3.1–G5.3.5 (1981)Google Scholar
  5. 5.
    Ghanbari, M.: The cross-search algorithm for motion estimation. IEEE Trans. Commun. 38(7), 950–953 (1990)CrossRefGoogle Scholar
  6. 6.
    Li, R., Zeng, B., Liou, M.L.: A new three-step search algorithm for block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 4(4), 438–442 (1994)CrossRefGoogle Scholar
  7. 7.
    Po, L.M., Ma, W.C.: A novel four-step search algorithm for fast block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 6(3), 313–317 (1996)CrossRefGoogle Scholar
  8. 8.
    Zhu, S., Ma, K.K.: A new diamond search algorithm for fast block-matching motion estimation. IEEE Trans. Image Process. 9(2), 287–290 (2000)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bhaskaran, V., Konstantinides, K.: Image and Video Compression Standards: Algorithms and Architectures. Kluwer, Norwell (1997)Google Scholar
  10. 10.
    Choi, K.T., Chan, S.C., Ng, T.S.: A new fast motion estimation algorithm using hexagonal subsampling pattern and multiple candidates search. Proc. Int. Conf. Image Process. 2, 497–500 (1996)CrossRefGoogle Scholar
  11. 11.
    Liu, B., Zaccarin, A.: New fast algorithms for the estimation of block motion vectors. IEEE Trans. Circuits. Syst. Video Technol. 3(2), 148–157 (1993)CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Wang, Y., Kuroda, H.: A globally adaptive pixel-decimation algorithm for block–motion estimation. IEEE Trans. Circuits Syst. Video Technol. 10(6), 1006–1011 (2000)CrossRefGoogle Scholar
  13. 13.
    Kim, J., Choi, T.: A fast full-search motion-estimation algorithm using representative pixels and adaptive matching scan. IEEE Trans. Circuits Syst. Video Technol. 10(7), 1040–1048 (2000)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Natarajan, B., Bhaskaran, V., Konstantinides, K.: Low-complexity block-based motion estimation via one-bit transforms. IEEE Trans. Circuits Syst. Video Technol. 7(4), 702–706 (1997)CrossRefGoogle Scholar
  15. 15.
    Urhan, O., Erturk, S.: Constrained one-bit transform for low complexity block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 17(4), 478–482 (2007)CrossRefGoogle Scholar
  16. 16.
    Erturk, S.: Multiplication-free one-bit transform for low-complexity block-based motion estimation. IEEE Signal Process. Lett. 14(2), 109–112 (2007)CrossRefGoogle Scholar
  17. 17.
    Erturk, A., Erturk, S.: Two-bit transform for binary block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 15(7), 938–946 (2005)CrossRefGoogle Scholar
  18. 18.
    Hu, W., Zhang, Q.: H.264 motion estimation algorithm based on video sequences activity. J. Electron. (China) 28(1), 125–128 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Athanasios Vlachos
    • 1
  • Vassilis Fotopoulos
    • 1
  • Athanassios N. Skodras
    • 1
  1. 1.Digital Systems and Media Computing Laboratory, School of Science and TechnologyHellenic Open UniversityPatrasGreece

Personalised recommendations