Advertisement

A fast feature-assisted adaptive early termination approach for multiple reference frames motion estimation in H.264

  • Jianfeng Ren
  • Nasser Kehtarnavaz
  • Madhukar Budagavi
Original Research Paper

Abstract

The multiple reference frames motion estimation approach used in H.264 is computationally intensive. This paper presents a fast or computationally efficient feature-assisted adaptive early termination approach in order to reduce the computational complexity while maintaining more or less the same video quality. The introduced feature-assisted approach consists of three parts: (1) reduction of the number of available reference frames using predicted motion activity, extracted texture information, and skip mode from neighboring macroblocks, (2) the most probable reference frame prediction based on neighboring macroblocks, and (3) an adaptive early termination threshold derived from a theoretical analysis of all zero block detection. Extensive experimental results are performed to demonstrate the computational gain of the introduced approach over the standard approach for the multiple reference frames motion estimation.

Keywords

Multiple reference frames motion estimation Feature-assisted early termination All-zero block detection 

References

  1. 1.
    Bjontegaard, G.: Calculation of average PSNR difference between RD-Curves. Doc. VCEG-M33 (2001)Google Scholar
  2. 2.
    Chang, A., Au, O.C., Yeung, Y.M.: A novel approach to fast multi-frame selection for H.264 video coding. IEEE Int. Conf. Acoust. Speech Signal Process. 3, 413–416 (2003)Google Scholar
  3. 3.
    Chen, Z., Xu, J., He, Y., Zheng, J.: Fast integer-pel and fractional-pel motion estimation for H.264/AVC. J. Vis. Commun. Image Represent. 17, 264–290 (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, M., Li, G., Chiang, Y., Hsu, C.: Fast multiframe motion estimation algorithms by motion vector composition for MPEG-4/AVC/H.264 standard. IEEE Trans. Multimed. 8(3), 478–487 (2006)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Huang, Y., Hsieh, B., Chien, S., Ma, S., Chen, L.: Analysis and complexity reduction of multiple reference frames motion estimation in H.264/AVC. IEEE Trans. Circuit Syst. Video Technol. 16(4), 507–522 (2006)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Kim, S., Han, J., Kim, J.: An efficient scheme for motion estimation using multireference frames in H.264/AVC. IEEE Trans. Multimed. 8(3), 457–466 (2006)CrossRefGoogle Scholar
  9. 9.
    Li, X., Li, E., Chen, Y.: Fast multi-frame motion estimation algorithm with adaptive search strategies in H.264. IEEE Int. Conf. Acoust. Speech Signal Process. 3, 369–372 (2004)Google Scholar
  10. 10.
    Li, H., Hsu, C., Chen, M.: Fast multiple reference frame selection method for motion estimation in JVT/H.264. In: The 2004 IEEE Asia-pacific conference on circuits and systems, pp. 605–608 (2004)Google Scholar
  11. 11.
    Liang, Y., Ahmad I., Luo, J., Sun, Y., Swaminathan, V.: On using hierarchical motion history for motion estimation in H.264/AVC. IEEE Trans. Circuit Syst. Video Technol. 15(12), 1594–1603 (2005)CrossRefGoogle Scholar
  12. 12.
    Lin, S., Lu, M., Chen, H., Pan, C.: Fast multi-frame motion estimation for H.264 and its application to complexity aware streaming. IEEE Int. Symp. Circuits Syst. 2, 1505–1508 (2005)CrossRefGoogle Scholar
  13. 13.
    Liu, X., Liang, D., Srivastava, A.: Image segmentation using local spectral histograms. In: Proceedings of IEEE ICIP, pp. 70–73 (2001)Google Scholar
  14. 14.
    Moon, Y., Kim, G., Kim, J.: An improved early detection algorithm for all-zero blocks in H.264 video encoding. IEEE Trans. Circuit Syst. Video Technol. 15(8), 1503–1507 (2005)Google Scholar
  15. 15.
    Pan, F., Lin, X., Susanto, R., Lim, K., Li, Z., Feng, G., Wu, D., Wu, S.: Fast mode decision for intra Prediction. Doc. JVT-G013 (2003)Google Scholar
  16. 16.
    Shen, L., Liu, Z., Zhang, Z., Wang G.: Video nature considerations for multi-frame selection algorithm in H.264. IEEE/ACS Int. Conf. Comput. Syst. Appl. 13–16, 708–711 (2007)CrossRefGoogle Scholar
  17. 17.
    Tourapis, A.M., Au, O.C., Liou, M.L.: Highly efficient predictive zonal algorithm for fast block-matching motion estimation. IEEE Trans. Circuit Syst. Video Technol. 12, 934–947 (2002)CrossRefGoogle Scholar
  18. 18.
    Uchiyama, T., Mukawa, N., Kaneko, H.: Estimation of homogenous regions for segmentation of textured Images. In: Proceedings of IEEE ICPR, pp. 1072–1075 (2002)Google Scholar
  19. 19.
    Wang, Y., Chang, S.: Complexity adaptive H.264 encoding for light weight streams. IEEE Int. Conf. Acoust. Speech Signal Process. 2, 25–28 (2006)Google Scholar
  20. 20.
    Wang, H., Kwong, S., Kok, C.: Efficient prediction algorithm of integer DCT coefficients for H.264/AVC optimization. IEEE Trans. Circuit Syst. Video Technol. 16, 547–552 (2006)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Xie, Z., Liu, Y., Liu, J., Yang, T.: A general method for detecting all-zero blocks prior to DCT and quantization. IEEE Trans. Circuit Syst. Video Technol. 17(2), 237–241 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jianfeng Ren
    • 1
  • Nasser Kehtarnavaz
    • 1
  • Madhukar Budagavi
    • 2
  1. 1.Department of Electrical EngineeringUniversity of Texas at DallasRichardsonUSA
  2. 2.DSP Solutions R&D Center, Texas InstrumentsDallasUSA

Personalised recommendations