Advertisement

Fast mode decision on H.264/AVC baseline profile for real-time performance

  • Marcos NietoEmail author
  • Luis Salgado
  • Julián Cabrera
  • Narciso García
Original Research Paper

Abstract

In this paper a new fast mode decision (FMD) algorithm is proposed for the recent H.264/AVC video coding standard, aiming to reduce its computational load without loosing coding efficiency. This algorithm identifies redundancy and selects the minimum sub-set of modes for each macroblock (MB) required to provide high rate-distortion (RD) efficiency. It is based on a fast analysis of the histogram of the difference image between frames which classifies the areas of each frame as active or non-active by means of an adaptive thresholding technique. More coding effort is devoted to active areas with the selection of a large sub-set of Modes, as these areas are expected to be the most relevant in terms of RD cost. Results show reduction values around 35–65% of motion estimation (ME) time, preserving the RD cost for the Baseline Profile, by using P-Slices and without needing B-Slices. Moreover, the strategy works as an intelligent tool for real-time applications with constrained number of operations per frame: it wisely uses the given operational resources distributing them among those MBs that need it.

Keywords

H.264/AVC Real-time Fast mode decision Histogram-based segmentation Adaptive thresholding 

Notes

Acknowledgments

This work has been partially supported by the Ministerio de Educación y Ciencia of the Spanish Government under project TIN2004-07860 (Medusa) and by the Comunidad de Madrid under project S0505/TIC-0223 (Pro-Multidis).

References

  1. 1.
    Wiegand, T., Sullivan, G.J.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)CrossRefGoogle Scholar
  2. 2.
    Richardson, I.E.G.: H.264 and MPEG-4 Video Compression. Video Coding for Next-generation Multimedia, edn. Wiley, London (2003)Google Scholar
  3. 3.
    Sullivan, G.J., Wiegand, T.: Rate-distortion optimization for video compression. IEEE Signal Process. Mag. 15(6), 74–90 (1998)CrossRefGoogle Scholar
  4. 4.
    Wiegand, T., Girod B.: Lagrange Multiplier Selection in Hybrid Video Coder Control. In: IEEE Proceedings ICIP01, vol. III, pp. 542–545 (2001)Google Scholar
  5. 5.
    Ates, H.F., Kaneberoglu, B., ALtunbasak, Y.: Rate-Distortion and complexity joint optimization for fast motion estimation in H.264 video coding. In: IEEE Proceedings ICIP06, pp. 37–40, Atlanta, 8–11 October 2006Google Scholar
  6. 6.
    Choi, I., Lee, J., Jeon, B.: Efficient Coding Mode Decision in MPEG-4 Part-10 AVC/H.264 Main Profile. In: IEEE Proceedings ICIP04, pp. 1141–1144 (2004)Google Scholar
  7. 7.
    Choi, B.-D., Nam, J.-H., Hwang, M.-C., Ko, S.-J.: Fast motion estimation and Intermode Selection for H.264. EURASIP J. Appl. Signal Process. vol. 2006, pp. 1–8Google Scholar
  8. 8.
    Nieto, M., Salgado, L., Cabrera, J.: Fast Mode Decision on H.264/AVC Main Profile Encoding Based on PSNR Predictions. In: IEEE Proceedings ICIP06, pp. 49–52, Atlanta, 8–11 October 2006Google Scholar
  9. 9.
    Lin, Z., Yu, H., Pan, F.: A scalable fast mode decision algorithm for H.264. In: IEEE International Symposium on Circuits and Systems 2006, 21–24 May 2006Google Scholar
  10. 10.
    Kim, C., Jay Kuo, C.-C.: Feature-based intra-/intercoding mode selection for H.264/AVC. IEEE Trans. Circuits Syst. Video Technol. 17(4), 441–453 (2007)CrossRefGoogle Scholar
  11. 11.
    Weisstein, E.W.: Heaviside Step Function. From MathWorld. A Wolfram Web Resource: http://mathworld.wolfram.com/HeavisideStepFunction.html
  12. 12.
    Niemisto, A.: A Comparison of Non-Parametric Histogram-Based Thresholding Algorithms: Presentation for 8002202 Digital Image Processing, vol. III, 27 October 2004Google Scholar
  13. 13.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–165CrossRefGoogle Scholar
  14. 14.
    Rosin, P.: Thresholding for change detection. In: Proceedings ICCV98, pp. 274–279 (1998)Google Scholar
  15. 15.
    Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, edn. Addison-Wesley Longman Publishing Co., Inc., Reading (1992)Google Scholar
  16. 16.
    H.264/AVC Reference Software Model (JM12.1). http://bs.hhi.de/ suehring/tml/index.html
  17. 17.
    Sullivan, G.J.: Recommended Simulation Common Conditions for H.26L Coding Efficiency Experiments on Low-Resolution Progressive-Scan Source Material. Document ITU-T VCEG-N81, Santa Barbara, 24–27 September 2001Google Scholar
  18. 18.
    Bjontegaard, G.: Calculation of Average PSNR Differences between RD-curves. Document ITU-T VCEG-M33, April 2001Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Marcos Nieto
    • 1
    Email author
  • Luis Salgado
    • 1
  • Julián Cabrera
    • 1
  • Narciso García
    • 1
  1. 1.Universidad Politécnica de Madrid, E.T.S.I. TelecomunicaciónMadridSpain

Personalised recommendations