Journal of Real-Time Image Processing

, Volume 2, Issue 4, pp 259–270 | Cite as

Change-driven data flow image processing architecture for optical flow computation

  • Julio C. Sosa
  • Jose A. BoludaEmail author
  • Fernando Pardo
  • Rocío Gómez-Fabela
Special Issue


Optical flow computation has been extensively used for motion estimation of objects in image sequences. The results obtained by most optical flow techniques are computationally intensive due to the large amount of data involved. A new change-based data flow pipelined architecture has been developed implementing the Horn and Schunk smoothness constraint; pixels of the image sequence that significantly change, fire the execution of the operations related to the image processing algorithm. This strategy reduces the data and, combined with the custom hardware implemented, it achieves a significant optical flow computation speed-up with no loss of accuracy. This paper presents the bases of the change-driven data flow image processing strategy, as well as the implementation of custom hardware developed using an Altera Stratix PCI development board.


Motion estimation Optical flow computation Data flow architectures 



This work has been supported by the project TEC2006-08130/MIC of the Spanish Ministerio de Educación y Ciencia.


  1. 1.
    Altera Corporation: Stratix Device Handbook. Stratix architecture, Chap. 2, pp. 2.1–2.140 (2005)Google Scholar
  2. 2.
    Arribas, P.C., Monasterio, F.: FPGA implementation of the Horn & Schunck optical flow algorithm for motion detection in real time images. In: Proc. XIII Design of Circuits and Integrated Systems, pp. 616–621, (1998)Google Scholar
  3. 3.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12, 43–77 (1994)CrossRefGoogle Scholar
  4. 4.
    Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surv. 27, 433–467 (1995)CrossRefGoogle Scholar
  5. 5.
    Boluda, J.A., Domingo, J.: On the advantages of combining differential algorithms and log-polar vision for detection of self-motion from a mobile robot. Rob. Auton. Syst. 37, 283–296 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Boluda, J.A., Pardo, F.: A reconfigurable architecture for autonomous visual navigation. Mach. Vis. Appl. 13, 322–331 (2003)CrossRefGoogle Scholar
  7. 7.
    Boluda, J.A., Pardo, F.: Speeding-up differential motion detection algorithms using a change-driven data flow processing strategy. Computer analysis of images and patterns. Springer Lect. Notes Comput. Sci. 4673, 77–84 (2007)CrossRefGoogle Scholar
  8. 8.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Proc. 8th European Conference on Computer Vision. Springer Lect. Notes Comput. Sci. 3024, 25–36 (2004)Google Scholar
  9. 9.
    Correia, M.V., Campilho, A.: A pipelined real-time optical flow algorithm. Springer Lect. Notes Comput. Sci. 3212, 372–380 (2004)CrossRefGoogle Scholar
  10. 10.
    Dopico, A.G., Correia, M.V., Santos, J.A., Nunes, L.M.: Distributed computation of optical flow. Springer Lect. Notes Comput. Sci. 3037, 380–387 (2004)CrossRefGoogle Scholar
  11. 11.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)CrossRefGoogle Scholar
  12. 12.
    Lim, S.H., Apostolopoulos, J.G., Gamal, A.E.: Optical flow estimation using temporally oversampled video. IEEE Trans. Image Process. 14, 890–903 (2005)CrossRefGoogle Scholar
  13. 13.
    Martin, J.L., Zuloaga, A., Cuadrado, C., Lazaro, J., Bidarte, U.: Hardware implementation of optical flow constraint equation using FPGAs. Comput. Vis. Image Underst. 98, 462–490 (2005)CrossRefGoogle Scholar
  14. 14.
    Pardo, F., Dierickx, B., Scheffer, D.: Space-variant non-orthogonal structure CMOS image sensor design. IEEE J. Solid State Circ. 33, 842–849 (1998)CrossRefGoogle Scholar
  15. 15.
    Pardo, F., Boluda, J.A., Sosa, J.C.: Circle detection and tracking speed-up based on change-driven image processing. In Proc. ICGST International Conference on Graphics, Vision and Image Processing GVIP-05 (2005)Google Scholar
  16. 16.
    Rosin, P.L., Ioannidis, E.: Evaluation of global image thresholding for change detection. Pattern Recognit. Lett. 24, 2345–2356 (2003)zbMATHCrossRefGoogle Scholar
  17. 17.
    Sezing, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13, 146–168 (2004)CrossRefGoogle Scholar
  18. 18.
    Sandini, G., Questa, P., Scheffer, D., Diericks, B., Mannucci, A.: A retina-like CMOS sensor and its applications. In: Sensor Array Multichannel Signal Process. Workshop, pp. 514–519 (2000)Google Scholar
  19. 19.
    Silc, J., Robic, B., Ungerer, T.: Processor architecture: from dataflow to superscalar and beyond. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  20. 20.
    Stocker, A.A.: Analog integrated 2-D optical flow sensor. Analog Integr. Circ. Signal Process. 46, 121–138 (2006)CrossRefGoogle Scholar
  21. 21.
    Teng, C.H., Lai, S.H., Chen, Y.S.: Accurate optical flow computation under non-uniform brightness variations. Comput. Vis. Image Underst. 97, 315–346 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Julio C. Sosa
    • 1
  • Jose A. Boluda
    • 2
    Email author
  • Fernando Pardo
    • 2
  • Rocío Gómez-Fabela
    • 2
  1. 1.Departamento de Sistemas ElectrónicosEscuela Superior de Cómputo—I.P.N.México, D.F.Mexico
  2. 2.Departament d’InformàticaUniversitat de ValènciaBurjassotSpain

Personalised recommendations