Journal of Real-Time Image Processing

, Volume 2, Issue 1, pp 23–34 | Cite as

Efficient and robust shot change detection

  • Sébastien LefèvreEmail author
  • Nicole Vincent
Original Research Paper


In this article, we deal with the problem of shot change detection which is of primary importance when trying to segment and abstract video sequences. Contrary to recent experiments, our aim is to elaborate a robust but very efficient (real-time even with uncompressed data) method to deal with the remaining problems related to shot change detection: illumination changes, context and data independency, and parameter settings. To do so, we have considered some adaptive threshold and derivative measures in a hue-saturation colour space. We illustrate our robust and efficient method by some experiments on news and football broadcast video sequences.


Shot change Hue saturation luminance Illumination invariance Context independency Real-time Parameter robustness 


  1. 1.
    Bezzera, F., Leite, N.: Using string matching to detect video transitions. Pattern Anal. Appl. 10, 45–54 (2007)CrossRefGoogle Scholar
  2. 2.
    Boccignone, G., Chianese, A., Moscato, V., Picariello, A.: Foveated shot detection for video segmentation. IEEE Trans. Circuits Syst. Video Technol. 15(3), 365–377 (2005)CrossRefGoogle Scholar
  3. 3.
    Boussaid, L., Mtibaa, A., Abid, M., Paindavoine, M.: A real-time shot cut detector: hardware implementation. Comput. Stand. Interfaces 29(3), 335–342 (2007)CrossRefGoogle Scholar
  4. 4.
    Cao, J., Cai, A.: A robust shot transition detection method based on support vector machine in compressed domain. Pattern Recognit. Lett. 28, 1534–1540 (2007)CrossRefGoogle Scholar
  5. 5.
    Cernekova, Z., Pitas, I., Nikou, C.: Information theory-based shot cut/fade detection and video summarization. IEEE Trans. Circuits Syst. Video Technol. 16(1), 82–91 (2006)CrossRefGoogle Scholar
  6. 6.
    Chen, C.: Video compression: Standards and applications. J. Vis. Commun. Image Represent. 4(2), 103–111 (1993)CrossRefGoogle Scholar
  7. 7.
    Cheng, S., Wu, T.: Scene-adaptive video partitioning by semantic object tracking. J. Vis. Commun. Image Represent. 17, 72–97 (2006)CrossRefGoogle Scholar
  8. 8.
    Fang, H., Jiang, J., Feng, Y.: A fuzzy logic approach for detection of video shot boundaries. Pattern Recognit. 39(11), 2092–2100 (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    Gargi, U., Kasturi, R., Strayer, S.: Performance characterization of video-shot-change detection methods. IEEE Trans. Circuits Syst. Video Technol. 10(1), 1–13 (2000)CrossRefGoogle Scholar
  10. 10.
    Grana, C., Cucchiara, R.: Linear transition detection as a unified shot detection approach. IEEE Trans. Circuits Syst. Video Technol. 17(4), 483–489 (2007)CrossRefGoogle Scholar
  11. 11.
    Janvier, B., Bruno, E., Pun, T., Marchand-Maillet, S.: Information-theoric temporal segmentation of video and applications: multiscale keyframes selection and shot boundaries detection. Int. J. Multimed. Tools Appl. 30, 273–288 (2006)CrossRefGoogle Scholar
  12. 12.
    Joyce, R., Liu, B.: Temporal segmentation of video using frame and histogram space. IEEE Trans. Multimed. 8(1), 130–140 (2006)CrossRefGoogle Scholar
  13. 13.
    Lefèvre, S., Holler, J., Vincent, N.: A review of real-time segmentation of uncompressed video sequences for content-based search and retrieval. Real-Time Imaging 9(1), 73–98 (2003)CrossRefGoogle Scholar
  14. 14.
    Li, S., Lee, M.: Effective detection of various wipe transitions. IEEE Trans. Circuits Syst. Video Technol. 17(6), 663–673 (2007)CrossRefGoogle Scholar
  15. 15.
    Mandal, M., Idris, F., Panchanathan, S.: A critical evaluation of image and video indexing techniques in the compressed domain. Image Vis. Comput. 17(7), 513–529 (1999)CrossRefGoogle Scholar
  16. 16.
    Mardia, K., Jupp, P.: Directional Statistics. Wiley, London (2000)Google Scholar
  17. 17.
    Over, P., Ianeva, T., Kraaij, W., Smeaton, A. (eds.) Proceedings of TRECVID 2005 (2005)Google Scholar
  18. 18.
    Qian, X., Liu, G., Su, R.: Effective fades and flashlight detection based on accumulating histogram difference. IEEE Trans. Circuits Syst. Video Technol. 16(10), 1245–1258 (2006)CrossRefGoogle Scholar
  19. 19.
    Travis, D.: Effective Color Displays. Theory and Practice. Academic, London (1991)Google Scholar
  20. 20.
    Yeo, B., Liu, B.: Rapid scene analysis on compressed video. IEEE Trans. Circuits Syst. Video Technol. 5(6), 533–544 (1995)CrossRefGoogle Scholar
  21. 21.
    Yuan, J., Wang, H., Xiao, L., Zheng, W., Li, J., Lin, F., Zhang, B.: A formal study of shot boundary detection. IEEE Trans. Circuits Syst. Video Technol. 17(2):168–186 (2007)CrossRefGoogle Scholar
  22. 22.
    Zhai, Y., Shah, M.: Video scene segmentation using markov chain monte carlo. IEEE Trans. Multimed. 8(4), 686–697 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.LSIIT, Université Louis Pasteur (Strasbourg I)Illkirch CedexFrance
  2. 2.CRIP5, Université René Descartes (Paris V)Paris Cedex 06France

Personalised recommendations