Advertisement

CT-based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms

  • José Raniery Ferreira-JuniorEmail author
  • Marcel Koenigkam-Santos
  • Ariane Priscilla Magalhães Tenório
  • Matheus Calil Faleiros
  • Federico Enrique Garcia Cipriano
  • Alexandre Todorovic Fabro
  • Janne Näppi
  • Hiroyuki Yoshida
  • Paulo Mazzoncini de Azevedo-Marques
Original Article
  • 119 Downloads

Abstract

Purpose

As some of the most important factors for treatment decision of lung cancer (which is the deadliest neoplasm) are staging and histology, this work aimed to associate quantitative contrast-enhanced computed tomography (CT) features from malignant lung tumors with distant and nodal metastases (according to clinical TNM staging) and histopathology (according to biopsy and surgical resection) using radiomics assessment.

Methods

A local cohort of 85 patients were retrospectively (2010–2017) analyzed after approval by the institutional research review board. CT images acquired with the same protocol were semiautomatically segmented by a volumetric segmentation method. Tumors were characterized by quantitative CT features of shape, first-order, second-order, and higher-order textures. Statistical and machine learning analyses assessed the features individually and combined with clinical data.

Results

Univariate and multivariate analyses identified 40, 2003, and 45 quantitative features associated with distant metastasis, nodal metastasis, and histopathology (adenocarcinoma and squamous cell carcinoma), respectively. A machine learning model yielded the highest areas under the receiver operating characteristic curves of 0.92, 0.84, and 0.88 to predict the same previous patterns.

Conclusion

Several radiomic features (including wavelet energies, information measures of correlation and maximum probability from co-occurrence matrix, busyness from neighborhood intensity-difference matrix, directionalities from Tamura’s texture, and fractal dimension estimation) significantly associated with distant metastasis, nodal metastasis, and histology were discovered in this work, presenting great potential as imaging biomarkers for pathological diagnosis and target therapy decision.

Keywords

Radiomics Lung cancer Quantitative imaging biomarker Pattern recognition 

Notes

Funding

This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Programa de Doutorado Sanduíche no Exterior (PDSE-CAPES) [Grant Number 88881.134004/2016-01], Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [Grants Numbers 2016/17078-0 and 2014/50889-7].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Comitê de Ética em Pesquisa do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, reference number 1.996.131) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

11548_2019_2093_MOESM1_ESM.pdf (1022 kb)
Supplementary material 1 (PDF 1021 kb)

References

  1. 1.
    Wong MC, Lao XQ, Ho KF, Goggins WB, Tse SLA (2017) Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Sci Rep 7:14300PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (2016) SEER cancer statistics review, 1975–2013. www.seer.cancer.gov/csr/1975_2013/. Accessed 22 July 2019
  3. 3.
    Cooper WA, O’Toole S, Boyer M, Horvath L, Mahar A (2011) What’s new in non-small cell lung cancer for pathologists: the importance of accurate subtyping, EGFR mutations and ALK rearrangements. Pathology 43:103–115PubMedCrossRefGoogle Scholar
  4. 4.
    Koenigkam-Santos M, Muley T, Warth A, Paula W, Lederlin M, Schnabel P, Schlemmer HP, Kauczor HU, Heussel CP, Puderbach M (2014) Morphological computed tomography features of surgically resectable pulmonary squamous cell carcinomas: impact on prognosis and comparison with adenocarcinomas. Eur J Radiol 83:1275–1281PubMedCrossRefGoogle Scholar
  5. 5.
    Tailor TD, Schmidt RA, Eaton KD, Wood D, Pipavath S (2015) The pseudocavitation sign of lung adenocarcinoma: a distinguishing feature and imaging biomarker of lepidic growth. J Thorac Imaging 30:308–313PubMedCrossRefGoogle Scholar
  6. 6.
    Yip S, Liu Y, Parmar C, Li Q, Liu S, Qu F, Ye Z, Gillies R, Aerts H (2017) Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer. Sci Rep 7:3519PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Giger M (2018) Machine learning in medical imaging. J Am Coll Radiol 15:512–520PubMedCrossRefGoogle Scholar
  8. 8.
    Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577PubMedCrossRefGoogle Scholar
  9. 9.
    Larue RT, Defraene G, Ruysscher De, Lambin P, van Elmpt W (2017) Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol 90:20160665PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Aerts H, Velazquez E, Leijenaar R, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen M, Leemans C, Dekker A, Quackenbush J, Gillies R, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Halpenny DF, Plodkowski A, Riely G, Zheng J, Litvak A, Moscowitz C, Ginsberg M (2017) Radiogenomic evaluation of lung cancer—Are there imaging characteristics associated with lung adenocarcinomas harboring BRAF mutations? Clin Imaging 42:147–151PubMedCrossRefGoogle Scholar
  12. 12.
    Sacconi B, Anzidei M, Leonardi A, Boni F, Saba L, Scipione R, Anile M, Rengo M, Longo F, Bezzi M, Venuta F, Napoli A, Laghi A, Catalano C (2017) Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival rates. Clin Radiol 72:443–450PubMedCrossRefGoogle Scholar
  13. 13.
    Permuth J, Choi J, Balarunathan Y, Kim J, Chen DT, Chen L, Orcutt S, Doepker M, Gage K, Zhang G, Latifi K, Hoffe S, Jiang K, Coppola D, Centeno B, Magliocco A, Li Q, Trevino J, Merchant N, Gillies R, Malafa M (2016) Combining radiomic features with a miRNA classifier may improve prediction of malignant pathology for pancreatic intraductal papillary mucinous neoplasms. Oncotarget 7:85785PubMedPubMedCentralGoogle Scholar
  14. 14.
    Fedorov A, Beichel R, Cramer J, Finet J, Robin J, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller J, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Egger J, Kapur T, Fedorov A, Pieper S, Miller J, Veeraraghavan H, Freisleben B, Golby A, Nimsky C, Kikinis R (2013) GBM volumetry using the 3D Slicer medical image computing platform. Sci Rep 3:1364PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Velazquez E, Parmar C, Jermoumi M, Mak R, van Baardwijk A, Fennessy F, Lewis J, Ruysscher D, Kikinis R, Lambin P, Aerts H (2013) Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep 3:3529PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Parmar C, Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak R, Mitra S, Shankar B, Kikinis R, Haibe-Kains B, Lambin P, Aerts H (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE 9:e102107PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Pinter C, Lasso A, Wang A, Jaffray D, Fichtinger G (2012) SlicerRT: radiation therapy research toolkit for 3D Slicer. Med Phys 39:6332–6338PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang L, Fried DV, Fave XJ, Hunter L, Yang J, Court L (2015) IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys 42:1341–1353PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lux M, Marques O (2013) Visual information retrieval using Java and LIRE. Morgan & Claypool Publishers, WillistonCrossRefGoogle Scholar
  21. 21.
    Schneider C, Rasband W, Eliceiri K (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Frank E, Hall M, Witten I (2016) The WEKA workbench. Online appendix for data mining: practical machine learning tools and techniques. Morgan Kaufmann, BurlingtonGoogle Scholar
  23. 23.
    Zameer A, Arshad J, Khan A, Raja M (2017) Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Convers Manag 134:361–372CrossRefGoogle Scholar
  24. 24.
    Ferreira Junior J, Koenigkam-Santos M, Cipriano F, Fabro A, Azevedo-Marques P (2018) Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Comput Methods Programs Biomed 159:23–30PubMedCrossRefGoogle Scholar
  25. 25.
    Emaminejad N, Qian W, Guan Y, Tan M, Qiu Y, Liu H, Zheng B (2016) Fusion of quantitative image and genomic biomarkers to improve prognosis assessment of early stage lung cancer patients. IEEE Trans Biomed Eng 63:1034–1043PubMedCrossRefGoogle Scholar
  26. 26.
    Coroller T, Grossmann P, Hou Y, Velazquez E, Leijenaar R, Hermann G, Lambin P, Haibe-Kains B, Mak R, Aerts H (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114:345–350PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Shroff GS, Benveniste MF, Groot PM, Wu C, Viswanathan C, Papadimitrakopoulou V, Truong M (2017) Targeted therapy and imaging findings. J Thorac Imaging 32:313–322PubMedCrossRefGoogle Scholar
  28. 28.
    Mok TS, Wu YL, Thongprasert S, Yang C, Chu D, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang J, Chewaskulyong B, Jiang H, Duffield E, Watkins C, Armour A, Fukuoka M (2009) Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957PubMedCrossRefGoogle Scholar
  29. 29.
    Tamura T, Kurishima K, Nakazawa K, Kagohashi K, Ishikawa H, Satoh H, Hizawa N (2015) Specific organ metastases and survival in metastatic non-small cell lung cancer. Mol Clin Oncol 3:217–221PubMedCrossRefGoogle Scholar
  30. 30.
    Zhou H, Dong D, Chen B, Fang M, Cheng Y, Gan Y, Zhang R, Zhang L, Zang Y, Liu Z, Zheng H, Li W, Tian J (2018) Diagnosis of distant metastasis of lung cancer: based on clinical and radiomic features. Transl Oncol 11:31–36PubMedCrossRefGoogle Scholar
  31. 31.
    Litjens G, Kooi T, Bejnordi B, Setio A, Ciompi F, Ghafoorian M, van der Laak J, van Ginneken B, Sánchez C (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88PubMedCrossRefGoogle Scholar
  32. 32.
    Zhu X, Dong D, Chen Z, Fang M, Zhang L, Song J, Yu D, Zang Y, Liu Z, Shi J, Tian J (2018) Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. Eur Radiol 28:2772–2778PubMedCrossRefGoogle Scholar
  33. 33.
    Digumarthy SR, Padole AM, Gullo R, Sequist LV, Kalra MK (2019) Can CT radiomic analysis in NSCLC predict histology and EGFR mutation status? Medicine 98:e13963PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ferreira JR, Azevedo-Marques PM, Oliveira MC (2017) Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval. Int J Comput Assist Radiol Surg 12:509–517PubMedCrossRefGoogle Scholar
  35. 35.
    Guo Y, Bennamoun M, Sohel F, Lu M, Wan J, Kwok N (2016) A comprehensive performance evaluation of 3D local feature descriptors. Int J Comput Vis 116:66–89CrossRefGoogle Scholar
  36. 36.
    Dhara AK, Mukhopadhyay S, Saha P, Garg M, Khandelwal N (2016) Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images. Int J Comput Assist Radiol Surg 11:337–349PubMedCrossRefGoogle Scholar
  37. 37.
    D’Antonoli TA, Farchione A, Lenkowicz J, Chiappetta M, Cicchetti G, Martino A, Ottavianelli A, Manfredi R, Margaritora S, Bonomo L, Valentini V, Larici AR (2019) CT radiomics signature of tumor and peritumoral lung parenchyma to predict nonsmall cell lung cancer postsurgical recurrence risk. Acad Radiol.  https://doi.org/10.1016/j.acra.2019.05.019 CrossRefGoogle Scholar
  38. 38.
    Levman JE, Martel AL (2011) A margin sharpness measurement for the diagnosis of breast cancer from magnetic resonance imaging examinations. Acad Radiol 18:1577–1581PubMedCrossRefGoogle Scholar
  39. 39.
    Ferreira JR Jr, Oliveira MC, Azevedo-Marques PM (2018) Characterization of pulmonary nodules based on features of margin sharpness and texture. J Digit Imaging 31:451–463PubMedCrossRefGoogle Scholar
  40. 40.
    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRefGoogle Scholar
  41. 41.
    Chartrand G, Cheng P, Vorontsov E, Drozdzal M, Turcotte S, Pal C, Kadoury S, Tang A (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131PubMedCrossRefGoogle Scholar
  42. 42.
    Shen W, Zhou M, Yang F, Yu D, Dong D, Yang C, Zang Y, Tian J (2017) Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognit 61:663–673CrossRefGoogle Scholar
  43. 43.
    Paul R, Hawkins S, Balagurunathan Y, Schabath M, Gillies R, Hall L, Goldgof D (2016) Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography 2:388–395PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© CARS 2019

Authors and Affiliations

  • José Raniery Ferreira-Junior
    • 1
    • 2
    Email author
  • Marcel Koenigkam-Santos
    • 2
  • Ariane Priscilla Magalhães Tenório
    • 2
  • Matheus Calil Faleiros
    • 1
  • Federico Enrique Garcia Cipriano
    • 2
  • Alexandre Todorovic Fabro
    • 2
  • Janne Näppi
    • 3
  • Hiroyuki Yoshida
    • 3
  • Paulo Mazzoncini de Azevedo-Marques
    • 2
  1. 1.São Carlos School of EngineeringUniversity of São PauloSão CarlosBrazil
  2. 2.Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  3. 3.Massachusetts General HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations