Advertisement

A “eye-in-body” integrated surgery robot system for stereotactic surgery

  • Liang Li
  • Julia Wu
  • Hui Ding
  • Guangzhi WangEmail author
Original Article
  • 143 Downloads

Abstract

Purpose

Current stereotactic surgical robots system relies on cumbersome operations such as calibration, tracking and registration to establish the accurate intraoperative coordinate transformation chain, which makes the system not easy to use. To overcome this problem, a novel stereotactic surgical robot system has been proposed and validated.

Methods

First, a hand–eye integrated scheme is proposed to avoid the intraoperative calibration between robot arm and motion tracking system. Second, a special reference-tool-based patient registration and tracking method is developed to avoid intraoperative registration. Third, a model-free visual servo method is used to reduce the accuracy requirement of hand–eye relationship and robot kinematic model. Finally, a prototype of the system is constructed and performance tests and a pedicle screw drilling experiment are performed.

Results

The results show that the proposed system has acceptable accuracy. The target positioning error in the plane was − 0.68 ± 0.52 mm and 0.06 ± 0.41 mm. The orientation error was 0.43 ± 0.25°. The pedicle screw drilling experiment shows that the system can complete accurate stereotactic surgery.

Conclusions

The stereotactic surgical robot system described in this paper can perform stereotactic surgery without the intraoperative hand–eye calibration and nor manual registration and can achieve an acceptable position and orientation accuracy while tolerating the errors in the hand–eye coordinate transformation error and the robot kinematics model error.

Keywords

Stereotactic surgery Surgical robotics Model-free control Patient tracking Patient registration Image-guided intervention 

Notes

Acknowledgements

The authors acknowledge the support of the Ministry of Science and Technology of China (Grant 2017YFA0205904, 2016YFC0105800).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain patient data.

References

  1. 1.
    Ghasem A, Sharma A, Greif DN, Alam M, Al Maaieh M (2018) The arrival of robotics in spine surgery a review of the literature. Spine 43(23):1670–1677.  https://doi.org/10.1097/brs.0000000000002695 CrossRefPubMedGoogle Scholar
  2. 2.
    Fomenko A, Serletis D (2017) Robotic stereotaxy in cranial neurosurgery: a qualitative systematic review. Neurosurgery.  https://doi.org/10.1093/neuros/nyx576 CrossRefGoogle Scholar
  3. 3.
    Tian W (2016) Robot-assisted posterior C1-2 transarticular screw fixation for atlantoaxial instability a case report. Spine 41(19B):B2–B5.  https://doi.org/10.1097/brs.0000000000001674 CrossRefPubMedGoogle Scholar
  4. 4.
    Lefranc M, Peltier J (2016) Evaluation of the ROSA spine robot for minimally invasive surgical procedures. Expert Rev Med Devices 13(10):899–906.  https://doi.org/10.1080/17434440.2016.1236680 CrossRefPubMedGoogle Scholar
  5. 5.
    Khan A, Meyers JE, Siasios I, Pollina J (2018) Next-generation robotic spine surgery: first report on feasibility, safety, and learning curve. Oper Neurosurg (Hagerstown Md).  https://doi.org/10.1093/ons/opy280 CrossRefGoogle Scholar
  6. 6.
    Bell B, Stieger C, Gerber N, Arnold A, Nauer C, Hamacher V, Kompis M, Nolte L, Caversaccio M, Weber S (2012) A self-developed and constructed robot for minimally invasive cochlear implantation. Acta Oto-Laryngol 132(4):355–360.  https://doi.org/10.3109/00016489.2011.642813 CrossRefGoogle Scholar
  7. 7.
    Song J, Ding H, Han W, Wang JQ, Wang GZ (2016) A motion compensation method for bi-plane robot-assisted internal fixation surgery of a femur neck fracture. Proc Inst Mech Eng Part H-J Eng Med 230(10):942–948.  https://doi.org/10.1177/0954411916663582 CrossRefGoogle Scholar
  8. 8.
    Danilchenko A, Balachandran R, Toennies JL, Baron S, Munske B, Fitzpatrick JM, Withrow TJ, Webster RJ, Labadie RF (2011) Robotic mastoidectomy. Otol Neurotol 32(1):11–16.  https://doi.org/10.1097/MAO.0b013e3181fcee9e CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tian W, Han XG, Liu B, Liu YJ, Hu Y, Han X, Xu YF, Fan MX, Jin HY (2014) A robot-assisted surgical system using a force-image control method for pedicle screw insertion. PLoS ONE 9(1):9.  https://doi.org/10.1371/journal.pone.0086346 CrossRefGoogle Scholar
  10. 10.
    Gerber N, Gavaghan KA, Bell BJ, Williamson TM, Weisstanner C, Caversaccio MD, Weber S (2013) High-accuracy patient-to-image registration for the facilitation of image-guided robotic microsurgery on the head. IEEE Trans Biomed Eng 60(4):960–968.  https://doi.org/10.1109/tbme.2013.2241063 CrossRefPubMedGoogle Scholar
  11. 11.
    Weber S, Gavaghan K, Wimmer W, Williamson T, Gerber N, Anso J, Bell B, Feldmann A, Rathgeb C, Matulic M, Stebinger M, Schneider D, Mantokoudis G, Scheidegger O, Wagner F, Kompis M, Caversaccio M (2017) Instrument flight to the inner ear. Sci Robot 2(4):12.  https://doi.org/10.1126/scirobotics.aal4916 CrossRefGoogle Scholar
  12. 12.
    Tauscher S, Fuchs A, Baier F, Kahrs LA, Ortmaier T (2017) High-accuracy drilling with an image guided light weight robot: autonomous versus intuitive feed control. Int J Comput Assist Radiol Surg 12(10):1763–1773.  https://doi.org/10.1007/s11548-017-1638-x CrossRefPubMedGoogle Scholar
  13. 13.
    Jin YS, Wang YF, Chen XT, Wang ZC, Liu XH, Jiang H, Chen XP (2017) Model-less feedback control for soft manipulators. In: Bicchi A, Okamura A (eds) 2017 IEEE/RSJ international conference on intelligent robots and systems. IEEE International Conference on Intelligent Robots and Systems. IEEE, New York, pp 2916–2922Google Scholar
  14. 14.
    Wang HS, Jiang MK, Chen WD, Liu YH (2012) Visual servoing of robots with uncalibrated robot and camera parameters. Mechatronics 22(6):661–668.  https://doi.org/10.1016/j.mechatronics.2011.05.007 CrossRefGoogle Scholar
  15. 15.
    Piepmeier JA, Mcmurray GV, Lipkin H (1999) A dynamic quasi-Newton method for uncalibrated visual servoing. In: Proceedings of IEEE international conference on robotics and automation, 1999, vol 1592. pp 1595–1600Google Scholar
  16. 16.
    Danying H, DeTone D, Chauhan V, Spivak I, Malisiewicz T (2018) Deep ChArUco: dark ChArUco marker pose estimation. arXiv. arXiv (USA):11, p 11Google Scholar
  17. 17.
    Lin Q, Cai K, Yang R, Chen H, Wang Z, Zhou J (2016) Development and validation of a near-infrared optical system for tracking surgical instruments. J Med Syst 40(4):1–14Google Scholar
  18. 18.
    Liu X, Liu ZY, Duan GF, Cheng J, Jiang XT, Tan JR (2018) Precise and robust binocular camera calibration based on multiple constraints. Appl Opt 57(18):5130–5140.  https://doi.org/10.1364/ao.57.005130 CrossRefPubMedGoogle Scholar
  19. 19.
    Deacon G, Harwood A, Holdback J, Maiwand D, Pearce M, Reid I, Street M, Taylor J (2010) The Pathfinder image-guided surgical robot. Proc Inst Mech Eng Part H-J Eng Med 224(H5):691–713.  https://doi.org/10.1243/09544119jeim617 CrossRefGoogle Scholar
  20. 20.
    Fuhrmann AL, Splechtna R, Prikryl J (2001) Comprehensive calibration and registration procedures for augmented reality. In: Frohich B, Deisinger J, Bullinger HJ (eds) Immersive projection technology and virtual environments 2001. Eurographics. Springer, Vienna, pp 219–227CrossRefGoogle Scholar
  21. 21.
    Yip MC, Camarillo DB (2014) Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans Robot 30(4):880–889.  https://doi.org/10.1109/tro.2014.2309194 CrossRefGoogle Scholar
  22. 22.
    Wei J, Wang TM, Liu D (2011) A vision guided hybrid robotic prototype system for stereotactic surgery. Int J Med Robot Comput Assist Surg 7(4):475–481.  https://doi.org/10.1002/rcs.431 CrossRefGoogle Scholar
  23. 23.
    Lin QY, Yang RQ, Cai K, Si X, Chen XW, Wu XM (2016) Real-time automatic registration in optical surgical navigation. Infrared Phys Technol 76:375–385.  https://doi.org/10.1016/j.infrared.2016.03.011 CrossRefGoogle Scholar
  24. 24.
    Li T, Zhao H, Chang Y (2018) Visual servoing tracking control of uncalibrated manipulators with a moving feature point. Int J Syst Sci 49(11):2410–2426.  https://doi.org/10.1080/00207721.2018.1504138 CrossRefGoogle Scholar

Copyright information

© CARS 2019

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations