Advertisement

Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—phase II: rupture risk assessment

  • Philipp BergEmail author
  • Samuel Voß
  • Gábor Janiga
  • Sylvia Saalfeld
  • Aslak W. Bergersen
  • Kristian Valen-Sendstad
  • Jan Bruening
  • Leonid Goubergrits
  • Andreas Spuler
  • Tin Lok Chiu
  • Anderson Chun On Tsang
  • Gabriele Copelli
  • Benjamin Csippa
  • György Paál
  • Gábor Závodszky
  • Felicitas J. Detmer
  • Bong J. Chung
  • Juan R. Cebral
  • Soichiro Fujimura
  • Hiroyuki Takao
  • Christof Karmonik
  • Saba Elias
  • Nicole M. Cancelliere
  • Mehdi Najafi
  • David A. Steinman
  • Vitor M. Pereira
  • Senol Piskin
  • Ender A. Finol
  • Mariya Pravdivtseva
  • Prasanth Velvaluri
  • Hamidreza Rajabzadeh-Oghaz
  • Nikhil Paliwal
  • Hui Meng
  • Santhosh Seshadhri
  • Sreenivas Venguru
  • Masaaki Shojima
  • Sergey Sindeev
  • Sergey Frolov
  • Yi Qian
  • Yu-An Wu
  • Kent D. Carlson
  • David F. Kallmes
  • Dan Dragomir-Daescu
  • Oliver Beuing
Original Article
  • 306 Downloads

Abstract

Purpose

Assessing the rupture probability of intracranial aneurysms (IAs) remains challenging. Therefore, hemodynamic simulations are increasingly applied toward supporting physicians during treatment planning. However, due to several assumptions, the clinical acceptance of these methods remains limited.

Methods

To provide an overview of state-of-the-art blood flow simulation capabilities, the Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH) was conducted. Seventeen research groups from all over the world performed segmentations and hemodynamic simulations to identify the ruptured aneurysm in a patient harboring five IAs. Although simulation setups revealed good similarity, clear differences exist with respect to the analysis of aneurysm shape and blood flow results. Most groups (12/71%) included morphological and hemodynamic parameters in their analysis, with aspect ratio and wall shear stress as the most popular candidates, respectively.

Results

The majority of groups (7/41%) selected the largest aneurysm as being the ruptured one. Four (24%) of the participating groups were able to correctly select the ruptured aneurysm, while three groups (18%) ranked the ruptured aneurysm as the second most probable. Successful selections were based on the integration of clinically relevant information such as the aneurysm site, as well as advanced rupture probability models considering multiple parameters. Additionally, flow characteristics such as the quantification of inflow jets and the identification of multiple vortices led to correct predictions.

Conclusions

MATCH compares state-of-the-art image-based blood flow simulation approaches to assess the rupture risk of IAs. Furthermore, this challenge highlights the importance of multivariate analyses by combining clinically relevant metadata with advanced morphological and hemodynamic quantification.

Keywords

Intracranial aneurysm Rupture risk Hemodynamic simulation International challenge 

Notes

Acknowledgements

This study was funded by the Federal Ministry of Education and Research in Germany within the Forschungscampus STIMULATE (Grant Number 13GW0095A) and the German Research Foundation (Grant Number 399581926). The authors highly acknowledge participants of MATCH Phase I, who contributed their segmentation results.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol 24(4):559–566Google Scholar
  2. 2.
    Kobayashi N, Miyachi S, Okamoto T, Hattori K, Kojima T, Nakai K, Qian S, Takeda H, Yoshida J (2004) Computer simulation of flow dynamics in an intracranial aneurysm. Effects of vessel wall pulsation on a case of ophthalmic aneurysm. Interv Neuroradiol: J Peritherapeutic Neuroradiol Surg Proced Relat Neurosci 10(Suppl 1):155–160.  https://doi.org/10.1177/15910199040100s127 Google Scholar
  3. 3.
    Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H (2011) Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42(1):144–152.  https://doi.org/10.1161/STROKEAHA.110.592923 Google Scholar
  4. 4.
    Xiang J, Yu J, Snyder KV, Levy EI, Siddiqui AH, Meng H (2016) Hemodynamic-morphological discriminant models for intracranial aneurysm rupture remain stable with increasing sample size. J Neurointerv Surg 8(1):104–110.  https://doi.org/10.1136/neurintsurg-2014-011477 Google Scholar
  5. 5.
    Cebral JR, Mut F, Weir J, Putman C (2011) Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol 32(1):145–151.  https://doi.org/10.3174/ajnr.A2419 Google Scholar
  6. 6.
    Cebral JR, Mut F, Weir J, Putman CM (2011) Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am J Neuroradiol 32(2):264–270.  https://doi.org/10.3174/ajnr.A2274 Google Scholar
  7. 7.
    Detmer FJ, Chung BJ, Mut F, Slawski M, Hamzei-Sichani F, Putman C, Jiménez C, Cebral JR (2018) Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics. Int J Comput Assist Radiol Surg 13(11):1767–1779.  https://doi.org/10.1007/s11548-018-1837-0 Google Scholar
  8. 8.
    Berg P, Stucht D, Janiga G, Beuing O, Speck O, Thévenin D (2014) Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J Biomech Eng.  https://doi.org/10.1115/1.4026108 Google Scholar
  9. 9.
    Roloff C, Stucht D, Beuing O, Berg P (2019) Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD. J Neurointerv Surg 11(3):275–282.  https://doi.org/10.1136/neurintsurg-2018-013921 Google Scholar
  10. 10.
    Raschi M, Mut F, Byrne G, Putman CM, Tateshima S, Viñuela F, Tanoue T, Tanishita K, Cebral JR (2012) CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm. Int J Numer Methods Biomed Eng 28(2):214–228.  https://doi.org/10.1002/cnm.1459 Google Scholar
  11. 11.
    Paliwal N, Damiano RJ, Varble NA, Tutino VM, Dou Z, Siddiqui AH, Meng H (2017) Methodology for computational fluid dynamic validation for medical use: application to intracranial aneurysm. J Biomech Eng.  https://doi.org/10.1115/1.4037792 Google Scholar
  12. 12.
    Bouillot P, Brina O, Ouared R, Lovblad K-O, Farhat M, Pereira VM (2014) Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design. PLoS ONE 9(12):e113762.  https://doi.org/10.1371/journal.pone.0113762 Google Scholar
  13. 13.
    Steinman DA, Hoi Y, Fahy P, Morris L, Walsh MT, Aristokleous N, Anayiotos AS, Papaharilaou Y, Arzani A, Shadden SC, Berg P, Janiga G, Bols J, Segers P, Bressloff NW, Cibis M, Gijsen FH, Cito S, Pallarés J, Browne LD, Costelloe JA, Lynch AG, Degroote J, Vierendeels J, Fu W, Qiao A, Hodis S, Kallmes DF, Kalsi H, Long Q, Kheyfets VO, Finol EA, Kono K, Malek AM, Lauric A, Menon PG, Pekkan K, Esmaily Moghadam M, Marsden AL, Oshima M, Katagiri K, Peiffer V, Mohamied Y, Sherwin SJ, Schaller J, Goubergrits L, Usera G, Mendina M, Valen-Sendstad K, Habets DF, Xiang J, Meng H, Yu Y, Karniadakis GE, Shaffer N, Loth F (2013) Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 summer bioengineering conference CFD challenge. J Biomech Eng 135(2):21016.  https://doi.org/10.1115/1.4023382 Google Scholar
  14. 14.
    Janiga G, Berg P, Sugiyama S, Kono K, Steinman DA (2015) The computational fluid dynamics rupture challenge 2013—phase I: prediction of rupture status in intracranial aneurysms. AJNR Am J Neuroradiol 36(3):530–536.  https://doi.org/10.3174/ajnr.A4157 Google Scholar
  15. 15.
    Berg P, Roloff C, Beuing O, Voss S, Sugiyama S-I, Aristokleous N, Anayiotos AS, Ashton N, Revell A, Bressloff NW, Brown AG, Chung BJ, Cebral JR, Copelli G, Fu W, Qiao A, Geers AJ, Hodis S, Dragomir-Daescu D, Nordahl E, Bora Suzen Y, Owais Khan M, Valen-Sendstad K, Kono K, Menon PG, Albal PG, Mierka O, Münster R, Morales HG, Bonnefous O, Osman J, Goubergrits L, Pallares J, Cito S, Passalacqua A, Piskin S, Pekkan K, Ramalho S, Marques N, Sanchi S, Schumacher KR, Sturgeon J, Švihlová H, Hron J, Usera G, Mendina M, Xiang J, Meng H, Steinman DA, Janiga G (2015) The computational fluid dynamics rupture challenge 2013–phase II: variability of hemodynamic simulations in two intracranial aneurysms. J Biomech Eng 137(12):121008.  https://doi.org/10.1115/1.4031794 Google Scholar
  16. 16.
    Valen-Sendstad K, Bergersen AW, Shimogonya Y, Goubergrits L, Bruening J, Pallares J, Cito S, Piskin S, Pekkan K, Geers AJ, Larrabide I, Rapaka S, Mihalef V, Fu W, Qiao A, Jain K, Roller S, Mardal K-A, Kamakoti R, Spirka T, Ashton N, Revell A, Aristokleous N, Houston JG, Tsuji M, Ishida F, Menon PG, Browne LD, Broderick S, Shojima M, Koizumi S, Barbour M, Aliseda A, Morales HG, Lefèvre T, Hodis S, Al-Smadi YM, Tran JS, Marsden AL, Vaippummadhom S, Einstein GA, Brown AG, Debus K, Niizuma K, Rashad S, Sugiyama S-I, Owais Khan M, Updegrove AR, Shadden SC, Cornelissen BMW, Majoie CBLM, Berg P, Saalfield S, Kono K, Steinman DA (2018) Real-world variability in the prediction of intracranial aneurysm wall shear stress. The 2015 international aneurysm CFD challenge. Cardiovasc Eng Tech 9(4):544–564.  https://doi.org/10.1007/s13239-018-00374-2 Google Scholar
  17. 17.
    Berg P, Voß S, Saalfeld S, Janiga G, Bergersen AW, Valen-Sendstad K, Bruening J, Goubergrits L, Spuler A, Cancelliere NM, Steinman DA, Pereira VM, Chiu TL, Tsang ACO, Chung BJ, Cebral JR, Cito S, Pallarès J, Copelli G, Csippa B, Paál G, Fujimura S, Takao H, Hodis S, Hille G, Karmonik C, Elias S, Kellermann K, Khan MO, Marsden AL, Morales HG, Piskin S, Finol EA, Pravdivtseva M, Rajabzadeh-Oghaz H, Paliwal N, Meng H, Seshadhri S, Howard M, Shojima M, Sugiyama S-I, Niizuma K, Sindeev S, Frolov S, Wagner T, Brawanski A, Qian Y, Wu Y-A, Carlson KD, Dragomir-Daescu D, Beuing O (2018) Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): phase I: segmentation. Cardiovas Eng Technol 9(4):565–581.  https://doi.org/10.1007/s13239-018-00376-0 Google Scholar
  18. 18.
    Berg P, Saalfeld S, Voß S, Redel T, Preim B, Janiga G, Beuing O (2018) Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations. J Neurointerv Surg 10(3):290–296.  https://doi.org/10.1136/neurintsurg-2017-012996 Google Scholar
  19. 19.
    Chnafa C, Brina O, Pereira VM, Steinman DA (2018) Better than nothing: a rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations. AJNR Am J Neuroradiol 39(2):337–343.  https://doi.org/10.3174/ajnr.A5484 Google Scholar
  20. 20.
    Murray CD (1926) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. In: Proceedings of the national academy of sciences of the United States of America 12(3):207–214Google Scholar
  21. 21.
    Carty G, Chatpun S, Espino DM (2016) Modeling blood flow through intracranial aneurysms. a comparison of newtonian and non-newtonian viscosity. J Med Biol Eng 36(3):396–409.  https://doi.org/10.1007/s40846-016-0142-z Google Scholar
  22. 22.
    Frolov S, Sindeev S, Liepsch D, Balasso A, Arnold P, Kirschke JS, Prothmann S, Potlov AY (2018) Newtonian and non-Newtonian blood flow at a 90∘-birfurcation of the cerebral artery. A comparative study of fluid viscosity models. J Mech Med Biol 18(05):1850043.  https://doi.org/10.1142/s0219519418500434 Google Scholar
  23. 23.
    Fisher C, Rossmann JS (2009) Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms. J Biomech Eng 131(9):91004.  https://doi.org/10.1115/1.3148470 Google Scholar
  24. 24.
    Morales HG, Larrabide I, Geers AJ, Aguilar ML, Frangi AF (2013) Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms. J Biomech 46(13):2158–2164.  https://doi.org/10.1016/j.jbiomech.2013.06.034 Google Scholar
  25. 25.
    Xiang J, Yu J, Choi H, Dolan Fox JM, Snyder KV, Levy EI, Siddiqui AH, Meng H (2015) Rupture Resemblance Score (RRS): toward risk stratification of unruptured intracranial aneurysms using hemodynamic-morphological discriminants. J Neurointerv Surg 7(7):490–495.  https://doi.org/10.1136/neurintsurg-2014-011218 Google Scholar
  26. 26.
    Qian Y, Takao H, Umezu M, Murayama Y (2011) Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results. AJNR Am J Neuroradiol 32(10):1948–1955.  https://doi.org/10.3174/ajnr.A2655 Google Scholar
  27. 27.
    Khan MO, Chnafa C, Gallo D, Molinari F, Morbiducci U, Steinman DA, Valen-Sendstad K (2017) On the quantification and visualization of transient periodic instabilities in pulsatile flows. J Biomech 52:179–182.  https://doi.org/10.1016/j.jbiomech.2016.12.037 Google Scholar
  28. 28.
    Valen-Sendstad K, Piccinelli M, Steinman DA (2014) High-resolution computational fluid dynamics detects flow instabilities in the carotid siphon: implications for aneurysm initiation and rupture? J Biomech 47(12):3210–3216.  https://doi.org/10.1016/j.jbiomech.2014.04.018 Google Scholar
  29. 29.
    Valen-Sendstad K, Steinman DA (2014) Mind the gap: impact of computational fluid dynamics solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status indicators. AJNR Am J Neuroradiol 35(3):536–543.  https://doi.org/10.3174/ajnr.A3793 Google Scholar
  30. 30.
    Chung BJ, Doddasomayajula R, Mut F, Detmer F, Pritz MB, Hamzei-Sichani F, Brinjikji W, Kallmes DF, Jimenez CM, Putman CM, Cebral JR (2017) Angioarchitectures and Hemodynamic Characteristics of Posterior Communicating Artery Aneurysms and Their Association with Rupture Status. AJNR Am J Neuroradiol 38(11):2111–2118.  https://doi.org/10.3174/ajnr.A5358 Google Scholar
  31. 31.
    Detmer FJ, Chung BJ, Mut F, Pritz M, Slawski M, Hamzei-Sichani F, Kallmes D, Putman C, Jimenez C, Cebral JR (2018) Development of a statistical model for discrimination of rupture status in posterior communicating artery aneurysms. Acta Neurochirur 160(8):1643–1652.  https://doi.org/10.1007/s00701-018-3595-8 Google Scholar
  32. 32.
    Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith WS, Young WL, Saloner D (2008) Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39(11):2997–3002.  https://doi.org/10.1161/STROKEAHA.108.521617 Google Scholar
  33. 33.
    Soize S, Gawlitza M, Raoult H, Pierot L (2016) Imaging follow-up of intracranial aneurysms treated by endovascular means: Why, When, and How? Stroke 47(5):1407–1412.  https://doi.org/10.1161/STROKEAHA.115.011414 Google Scholar
  34. 34.
    Goubergrits L, Hellmeier F, Bruening J, Spuler A, Hege HC, Voß S, Janiga G, Saalfeld S, Beuing O, Berg P (2019) Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—Uncertainty quantification of geometric rupture risk parameters. BioMed Eng OnLine 18(1):35.  https://doi.org/10.1186/s12938-019-0657-y Google Scholar
  35. 35.
    Mirams GR, Pathmanathan P, Gray RA, Challenor P, Clayton RH (2016) Uncertainty and variability in computational and mathematical models of cardiac physiology. J Physiol 594(23):6833–6847.  https://doi.org/10.1113/JP271671 Google Scholar
  36. 36.
    Sankaran S, Kim HJ, Choi G, Taylor CA (2016) Uncertainty quantification in coronary blood flow simulations: impact of geometry, boundary conditions and blood viscosity. J Biomech 49(12):2540–2547.  https://doi.org/10.1016/j.jbiomech.2016.01.002 Google Scholar
  37. 37.
    Schiavazzi DE, Arbia G, Baker C, Hlavacek AM, Hsia TY, Marsden AL, Vignon-Clementel IE (2016) Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. Int J Numer Methods Biomed Eng 32(3):e02737.  https://doi.org/10.1002/cnm.2737 Google Scholar
  38. 38.
    Doddasomayajula R, Chung B, Hamzei-Sichani F, Putman CM, Cebral JR (2017) Differences in hemodynamics and rupture rate of aneurysms at the bifurcation of the basilar and internal carotid arteries. AJNR Am J Neuroradiol 38(3):570–576.  https://doi.org/10.3174/ajnr.A5088 Google Scholar
  39. 39.
    Sano T, Ishida F, Tsuji M, Furukawa K, Shimosaka S, Suzuki H (2017) Hemodynamic differences between ruptured and unruptured cerebral aneurysms simultaneously existing in the same location: 2 case reports and proposal of a novel parameter oscillatory velocity index. World Neurosurg 98:868.e5–868.e10.  https://doi.org/10.1016/j.wneu.2016.12.047 Google Scholar
  40. 40.
    Berg P, Beuing O (2018) Multiple intracranial aneurysms: a direct hemodynamic comparison between ruptured and unruptured vessel malformations. Int J Comput Assist Radiol Surg 13(1):83–93.  https://doi.org/10.1007/s11548-017-1643-0 Google Scholar
  41. 41.
    Voß S, Glaßer S, Hoffmann T, Beuing O, Weigand S, Jachau K, Preim B, Thévenin D, Janiga G, Berg P (2016) Fluid-structure simulations of a ruptured intracranial aneurysm: constant versus patient-specific wall thickness. Comput Math Methods Med 2016:9854539.  https://doi.org/10.1155/2016/9854539 Google Scholar
  42. 42.
    Cebral J, Ollikainen E, Chung BJ, Mut F, Sippola V, Jahromi BR, Tulamo R, Hernesniemi J, Niemelä M, Robertson A, Frösen J (2017) Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. AJNR Am J Neuroradiol 38(1):119–126.  https://doi.org/10.3174/ajnr.A4951 Google Scholar

Copyright information

© CARS 2019

Authors and Affiliations

  • Philipp Berg
    • 1
    Email author
  • Samuel Voß
    • 1
  • Gábor Janiga
    • 1
  • Sylvia Saalfeld
    • 1
  • Aslak W. Bergersen
    • 2
  • Kristian Valen-Sendstad
    • 2
  • Jan Bruening
    • 3
  • Leonid Goubergrits
    • 3
  • Andreas Spuler
    • 4
  • Tin Lok Chiu
    • 5
  • Anderson Chun On Tsang
    • 5
  • Gabriele Copelli
    • 6
  • Benjamin Csippa
    • 7
  • György Paál
    • 7
  • Gábor Závodszky
    • 7
  • Felicitas J. Detmer
    • 8
  • Bong J. Chung
    • 8
  • Juan R. Cebral
    • 8
  • Soichiro Fujimura
    • 9
  • Hiroyuki Takao
    • 9
  • Christof Karmonik
    • 10
  • Saba Elias
    • 10
  • Nicole M. Cancelliere
    • 11
  • Mehdi Najafi
    • 12
  • David A. Steinman
    • 12
  • Vitor M. Pereira
    • 11
  • Senol Piskin
    • 13
  • Ender A. Finol
    • 13
  • Mariya Pravdivtseva
    • 14
  • Prasanth Velvaluri
    • 15
  • Hamidreza Rajabzadeh-Oghaz
    • 16
  • Nikhil Paliwal
    • 16
  • Hui Meng
    • 16
  • Santhosh Seshadhri
    • 17
  • Sreenivas Venguru
    • 17
  • Masaaki Shojima
    • 18
  • Sergey Sindeev
    • 19
  • Sergey Frolov
    • 19
  • Yi Qian
    • 20
  • Yu-An Wu
    • 21
  • Kent D. Carlson
    • 21
  • David F. Kallmes
    • 21
  • Dan Dragomir-Daescu
    • 21
  • Oliver Beuing
    • 22
  1. 1.University of MagdeburgMagdeburgGermany
  2. 2.Simula Research LaboratoryLysakerNorway
  3. 3.Charité – UniversitätsmedizinBerlinGermany
  4. 4.Helios Hospital Berlin BuchBerlinGermany
  5. 5.University of Hong KongHong KongChina
  6. 6.University of ParmaParmaItaly
  7. 7.Budapest University of Technology and EconomicsBudapestHungary
  8. 8.George Mason UniversityFairfaxUSA
  9. 9.Tokyo University of ScienceTokyoJapan
  10. 10.Houston Methodist Research InstituteHoustonUSA
  11. 11.Toronto Western HospitalTorontoCanada
  12. 12.University of TorontoTorontoCanada
  13. 13.The University of Texas at San AntonioSan AntonioUSA
  14. 14.University Medical Center Schleswig-HolsteinKielGermany
  15. 15.Christian-Albrechts-UniversityKielGermany
  16. 16.State University of New YorkBuffaloUSA
  17. 17.Medtronic Engineering Innovation CentreHyderabadIndia
  18. 18.Saitama Medical University General HospitalSaitamaJapan
  19. 19.Tambov State Technical UniversityTambovRussia
  20. 20.Macquarie UniversitySydneyAustralia
  21. 21.Mayo ClinicRochesterUSA
  22. 22.University Hospital MagdeburgMagdeburgGermany

Personalised recommendations