Advertisement

Optimization of electronic prescription for parallel external fixator based on genetic algorithm

  • Xishuai Zhang
  • Hao SunEmail author
  • Jianwen Chen
  • Yue Guo
  • Yinguang Zhang
  • Zhenhui Sun
  • Tao Wang
  • Mengting Wei
  • Yan Zhang
  • Lingling Chen
Original Article
  • 19 Downloads

Abstract

Purpose

For the parallel external fixator, there are some defects, such as uneven distraction rate, unbearable pain and uncontrollable movement trajectory in practical clinical applications. In order to solve the problems, a new deformity correction algorithm, which is used to calculate the elongation of the six struts, is developed. Meanwhile, the corresponding computer software for getting the electronic prescription is developed.

Methods

First, the trajectory of the moving bone is planned by Cartesian coordinate path control. Next, the prescription is obtained from the trajectory by the inverse pose solution algorithm. Finally, the genetic algorithm is utilized to optimize the achieved prescription. From the year of 2015 to 2018, twenty-three patients with complicated tibia deformity are treated by using parallel external fixator and the developed computer software. All patients have standing, patella-forward, full-length post-operative AP and lateral radiographs of the lower limbs with the complete proximal ring for getting the deformity parameters and frame parameters. These parameters are input into the computer software to calculate a daily prescription schedule for strut adjustment. Radiographs are taken regularly to determine the effects of recovery during the correction process.

Results

The mean time of follow-up is 18 months (range 11–40 months). All patients reach the requirements for deformity correction, and their symptoms and appearance are improved significantly. No cases of wound infections or complications occur, and no severe pain came as well during the correction process.

Conclusions

By using the computer-aided parallel external fixator for the correction of lower limb deformities, satisfactory outcomes can be achieved. Hence, this method greatly improved the treatment of these patients in a clinical application.

Keywords

Bone external fixator Trajectory planning Genetic algorithm Deformity correction 

Notes

Acknowledgements

The research work is supported by National Natural Science Fund Project of China (No. 61773151), National Natural Science Fund Project of China (No. 61703135), Hebei Province Natural Science Fund Project (F2018202279), Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period of China under Grant No. 2012BAI33B06. Thanks to the clinical work of orthopaedic surgeon in the National Research Centre for Rehabilitation Technical Aids.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Feldman DS, Madan SS, Koval KJ (2003) Correction of tibia vara with six-axis deformity analysis and the Taylor spatial frame. J Pediatr Orthop 23(3):387–391.  https://doi.org/10.1097/00004694-200305000-00022 Google Scholar
  2. 2.
    Wei MT, Chen JW, Guo Y, Sun H (2017) The computer-aided parallel external fixator for complex lower limb deformity correction. Int J Comput Assist Radiol Surg 3:1–11.  https://doi.org/10.1007/s11548-017-1654-x Google Scholar
  3. 3.
    Manner HM, Huebl M, Radler C, Ganger R, Petje G, Grill F (2007) Accuracy of complex lower-limb deformity correction with external fixation: a comparison of the Taylor Spatial Frame with the Ilizarov ring fixator. J Child Orthop 1(1):55–61.  https://doi.org/10.1007/s11832-006-0005-1 CrossRefGoogle Scholar
  4. 4.
    Ganger R, Radler C, Speigner B, Grill F (2010) Correction of post-traumatic lower limb deformities using the Taylor spatial frame. J Int Orthop 34(5):723–730.  https://doi.org/10.1007/s00264-009-0839-5 CrossRefGoogle Scholar
  5. 5.
    Dammerer D, Kirschbichler K, Donnan L, Kaufmann G, Krismer M (2011) Clinical value of the Taylor Spatial Frame: a comparison with the Ilizarov and Orthofix fixators. J Child Orthop 5(5):343–349.  https://doi.org/10.1007/s11832-011-0361-3 CrossRefGoogle Scholar
  6. 6.
    Monticelli G, Spinelli R (1981) Limb lengthening by epiphyseal distraction. J Int Orthop 5(2):85–90.  https://doi.org/10.1007/BF00267837 CrossRefGoogle Scholar
  7. 7.
    Seide K, Faschingbauer M, Wenzl ME, Weinrich N, Juergens C (2010) A hexapod robot external fixator for computer assisted fracture reduction and deformity correction. J Int Med Robot + Comput Assist Surg Mrcas 1(1):64–69.  https://doi.org/10.1002/rcs.6 CrossRefGoogle Scholar
  8. 8.
    Fragomen AT, Ilizarov S, Blyakher A, Rozbruch SR (2005) Proximal tibial osteotomy for medial compartment osteoarthritis of the knee using the Ilizarov Taylor spatial frame. Tech Knee Surg 4(3):173–185.  https://doi.org/10.1097/01.btk.0000175882.99745.a3 CrossRefGoogle Scholar
  9. 9.
    Bianchi MA (1997) Historical review of the method according to Ilizarov, 15 years after its worldwide application. Bullentin 56(1):16–18 (PMID: 9063597)Google Scholar
  10. 10.
    Gubin AV, Borzunov DY, Malkova TA (2013) The Ilizarov paradigm: thirty years with the Ilizarov method, current concerns and future research. Int Orthop 37(8):1533–1539.  https://doi.org/10.1007/s00264-013-1935-0 CrossRefGoogle Scholar
  11. 11.
    Shtarker H, Volpin G, Stolero J, Kaushansky A, Samchukov M (2002) Correction of combined angular and rotational deformities by the Ilizarov method. Clin Orthop Relat Res 402(402):184–195 (PMID:12218483)CrossRefGoogle Scholar
  12. 12.
    Lesiak AC, Vosseller JT, Rozbruch SR (2012) Osteotomy, arthrodesis, and arthroplasty for complex multiapical deformity of the leg. HSS J 8(3):304–308.  https://doi.org/10.1007/s11420-011-9232-1 CrossRefGoogle Scholar
  13. 13.
    Au W, Chung H, Chen C (2016) Path planning and assembly mode-changes of 6-DOF Stewart-Gough-type parallel manipulators. Mech Mach Theory 106(1):30–49.  https://doi.org/10.1016/j.mechmachtheory.2016.08.010 CrossRefGoogle Scholar
  14. 14.
    Iobst C (2010) Limb lengthening combined with deformity correction in children with the Taylor Spatial Frame. J Pediatr Orthop B 19(6):529.  https://doi.org/10.1097/bpb.0b013e32833dec43 CrossRefGoogle Scholar
  15. 15.
    Jin Y, Chen IM, Yang G (2006) Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation. IEEE Trans Rob 22(3):545–551.  https://doi.org/10.1109/tro.2006.870648 CrossRefGoogle Scholar
  16. 16.
    Sluga M, Pfeiffer M, Kotz R, Nehrer S (2003) Lower limb deformities in children: two-stage correction using the Taylor spatial frame. J Pediatric Orthop Part B 12(2):123–128.  https://doi.org/10.1097/01.bpb.0000049578.53117.03 Google Scholar
  17. 17.
    Rödl R, Leidinger B, Böhm A et al (2003) Correction of deformities with conventional and hexapod frames–comparison of methods. Zeitschrift Für Orthopädie Und Ihre Grenzgebiete 141(1):92–98 (PMID: 12605337)CrossRefGoogle Scholar
  18. 18.
    Tafazal S, Madan SS, Ali F et al (2014) Management of paediatric tibial fractures using two types of circular external fixator: Taylor spatial frame and Ilizarov circular fixator. J Child Orthop 8(3):273–279CrossRefGoogle Scholar
  19. 19.
    Nanua P, Waldron KJ, Murthy V (1990) Direct kinematic solution of a Stewart platform. IEEE Trans Robot Autom 6(4):438–444.  https://doi.org/10.1109/70.59354 CrossRefGoogle Scholar
  20. 20.
    Paley D (2002) Principles of deformity correction. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Gantsoudes GD, Fragomen AT, Rozbruch SR (2010) Intraoperative measurement of mounting parameters for the Taylor Spatial Frame. J Orthop Trauma 24(4):258–262.  https://doi.org/10.1097/BOT.0b013e3181c2f7f0 CrossRefGoogle Scholar
  22. 22.
    Dasgupta B, Mruthyunjaya TS (2000) Erratum to: “A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator’’ [Mech. Mach. Theory 33 (1998), no. 8, 1135-1152; MR1661738 (99 h:70005)]. Mech Mach Theory.  https://doi.org/10.1016/s0094-114x(99)00065-8 Google Scholar
  23. 23.
    Stewart D (1965) A platform with six degrees of freedom. Arch Proc Inst Mech Eng 1965(180):371–386CrossRefGoogle Scholar
  24. 24.
    Xiong YL (1993) Robotics. Mechanical Industry Press, BeijingGoogle Scholar
  25. 25.
    Su Y, Chu X, Chen D, Sun X (2017) A genetic algorithm for operation sequencing in CAPP using edge selection based encoding strategy. J Intell Manuf 9–10:1–20.  https://doi.org/10.1007/s10845-015-1109-6 Google Scholar
  26. 26.
    Wang S, Lu Z, Wei L, Yang J, Yang J (2016) Fitness-scaling adaptive genetic algorithm with local search for solving the multiple depot vehicle routing problem. Simulation 92(7):601–616.  https://doi.org/10.1177/0037549715603481 CrossRefGoogle Scholar
  27. 27.
    El BH, Abdel GH, Misbah H et al (2005) Complex tibial plateau fractures treated with Ilizarov external fixator with or without minimal internal fixation. Int Orthop 29(3):182–185.  https://doi.org/10.1007/s00264-005-0638-6 CrossRefGoogle Scholar
  28. 28.
    Gunes T, Erdem M, Bostan B, Yeniel K, Sen C (2008) Quality of life in patients with varus gonarthrosis treated with high tibial osteotomy using the circular external fixator. Knee Surg Sports Traumatol Arthrosc 16(3):311–316.  https://doi.org/10.1007/s00167-007-0473-y CrossRefGoogle Scholar
  29. 29.
    Fichter EF (1986) A stewart-platform based manipulator: general theory and practical construction, vol 5. Sage Publications Inc, Thousand Oaks, pp 157–182.  https://doi.org/10.1177/027836498600500216 Google Scholar
  30. 30.
    Feldman DS, Shin SS, Madan S, Koval KJ (2003) Correction of tibial malunion and nonunion with six-axis analysis deformity correction using the Taylor Spatial Frame. J Orthop Trauma 17(8):549–554.  https://doi.org/10.1097/00005131-200309000-00002 CrossRefGoogle Scholar

Copyright information

© CARS 2019

Authors and Affiliations

  1. 1.School of Artificial Intelligence and Data ScienceHebei University of TechnologyTianjinChina
  2. 2.Rehabilitation HospitalNational Research Center for Rehabilitation Technical AidsBeijingChina
  3. 3.Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil AffairsBeijingChina
  4. 4.Tianjin HospitalTianjinChina

Personalised recommendations