Advertisement

Toward versatile cooperative surgical robotics: a review and future challenges

  • Philipp SchleerEmail author
  • Sergey Drobinsky
  • Matias de la Fuente
  • Klaus Radermacher
Review Article
  • 243 Downloads

Abstract

Purpose

Surgical robotics has developed throughout the past 30 years resulting in more than 5000 different approaches proposed for various surgical disciplines supporting different surgical task sequences and differing ways of human–machine cooperation or degrees of automation. However, this diversity of systems influences cost as well as usability and might hinder their widespread adoption. In combination with the current trend toward open and modular “plug and play” dynamic networks of medical devices and IT systems in the operating room, a modular human–robot system design with versatile access to cooperative functions with varying degrees of automation on demand is desirable. Therefore, standardized robotic device profiles describing essential functional characteristics of cooperative robotic systems are mandatory.

Methods

Surgical robotics is analyzed from a human–machine interaction perspective to identify generic cooperative robotic device profiles, features and use cases. Therefore, cooperative aspects are introduced from a general point of view. Relevant communication channels used for human–machine interaction are then analyzed, referenced by surgical scenarios. Subsequently, proposed classifications of surgical task sequences and surgical robotic systems are analyzed with a focus on a modular design for cooperative robotics in surgery.

Results

Considerations based on cooperative guidelines are given and features are identified and summarized in a classification scheme used to define distinct generic cooperative robotic device profiles. The latter can be the basis for a modular architecture of future surgical robot systems.

Conclusion

Modular system design can be expanded toward functionalities or different degrees of autonomy, shared or manual control. The proposed device profiles of cooperative surgical robots could lay the foundation for integration into open and modular dynamic “plug and play” networks in the operating room to enhance versatility, benefit-to-cost ratio and, thereby, market spread of surgical robotics.

Keywords

Surgical robotics Synergistic systems Shared control Robotic manipulators Human–machine interaction Haptics 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors. This article does not contain patient data.

References

  1. 1.
    Wickens CD (1984) Engineering psychology and human performance. A Bell & Howell Company, ColumbusGoogle Scholar
  2. 2.
    Taylor RH (2006) A perspective on medical robotics. Proc IEEE 94:1652–1664CrossRefGoogle Scholar
  3. 3.
    Luczak H (1993) Prinzipien menschlicher Informationsverarbeitung-Analytik und Gestaltung informatorisch-mentaler Arbeit. In: Arbeitswissenschaft. Springer, Berlin, Heidelberg, pp 126–213CrossRefGoogle Scholar
  4. 4.
    Knight JL (1987) Manual control and tracking. In: Salvendy G (ed) Handbook of human factors. Wiley, New York, pp 182–218Google Scholar
  5. 5.
    Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35:153–160CrossRefPubMedGoogle Scholar
  6. 6.
    Dario P, Hannaford B, Menciassi A (2003) Smart surgical tools and augmenting devices. IEEE Trans Robot Autom 19:782–792CrossRefGoogle Scholar
  7. 7.
    Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM (2011) Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot Comput Assist Surg 7:375–392CrossRefGoogle Scholar
  8. 8.
    Tahboub KA (2001) Natural and manmade shared-control systems: an overview. In: Proceeding 2001 ICRA. IEEE international conference on robotics and automation. IEEE, Seoul, South Korea, pp 2655–2660Google Scholar
  9. 9.
    Taylor RH, Menciassi A, Fichtinger G, Dario P (2008) Medical robotics and computer-integrated surgery. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Cham, pp 1199–1222CrossRefGoogle Scholar
  10. 10.
    Brandt G, Zimolong A, Carrat L, Merloz P, Staudte H-W, Lavallee S, Radermacher K, Rau G (1999) CRIGOS: a compact robot for image-guided orthopedic surgery. IEEE Trans Inf Technol Biomed 3:252–260CrossRefPubMedGoogle Scholar
  11. 11.
    Shoham M, Burman M, Zehavi E, Joskowicz L, Batkilin E, Kunicher Y (2003) Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans Robot Autom 19:893–901CrossRefGoogle Scholar
  12. 12.
    Clark TC, Schmidt FH (2013) Robot-assisted navigation versus computer-assisted navigation in primary total knee arthroplasty: efficiency and accuracy. ISRN Orthop 2013:794827CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kazanzides P, Zuhars J, Mittelstadt B, Williamson B, Cain P, Smith F, Rose L, Musits B (1992) Architecture of a surgical robot. In: IEEE international conference on systems, man and cybernetics, 1992. IEEE, New York, pp 1624–1629Google Scholar
  14. 14.
    Kazanzides P, Mittelstadt BD, Musits BL, Bargar WL, Zuhars JF, Williamson B, Cain PW, Carbone EJ (1995) An integrated system for cementless hip replacement. IEEE Eng Med Biol Mag 14:307–313CrossRefGoogle Scholar
  15. 15.
    Troccaz J, Peshkin M, Davies B (1998) Synergistic mechanical devices: a new generation of medical robots. In: Hirose S, Shirai Y (eds) Robotics research. Springer, London, pp 317–323CrossRefGoogle Scholar
  16. 16.
    Jakopec M, Harris SJ, Rodriguez y Baena F, Gomes P, Davies BL (2003) The Acrobot® system for total knee replacement. Ind Robot An Int J 30:61–66CrossRefGoogle Scholar
  17. 17.
    Taylor R, Jensen P, Whitcomb L, Barnes A, Kumar R, Stoianovici D, Gupta P, Wang Z, Dejuan E, Kavoussi L (1999) A steady-hand robotic system for microsurgical augmentation. Int J Rob Res 18:1201–1210CrossRefGoogle Scholar
  18. 18.
    Brisson G, Kanade T, DiGioia A, Jaramaz B (2004) Precision freehand sculpting of bone. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 105–112Google Scholar
  19. 19.
    Follmann A, Korff A, Fuertjes T, Kunze SC, Schmieder K, Radermacher K (2012) A novel concept for smart trepanation. J Craniofac Surg 23:309–314CrossRefPubMedGoogle Scholar
  20. 20.
    Niggemeyer M, Müller M, Niesche A, de la Fuente M, Komadinic A, Radermacher K (2012) Modular design of a miniaturized surgical robot system. Biomed Tech Eng 57:261–268Google Scholar
  21. 21.
    Theisgen L, de la Fuente M, Radermacher K (2018) Modular design of versatile surgical mini-robots. Curr Dir Biomed Eng 4:411–414CrossRefGoogle Scholar
  22. 22.
    Spath D, Braun M, Bauer W (2009) Integrated human and automation systems. In: Nof SY (ed) Springer handbook of automation. Springer, Berlin, Heidelberg, pp 571–598CrossRefGoogle Scholar
  23. 23.
    Golatowski F, Janss A, Leucker M, Neumuth T (2018) OR. NET-secure dynamic networks in the operating room and clinic. Biomed Eng Technol 63:1–3CrossRefGoogle Scholar
  24. 24.
    Pfeiffer JH, Kasparick M, Strathen B, Dietz C, Dingler ME, Lueth TC, Timmermann D, Radermacher K, Golatowski F (2018) OR. NET RT: how service-oriented medical device architecture meets real-time communication. Biomed Eng Technol 63:81–93CrossRefGoogle Scholar
  25. 25.
    Janß A, Thorn J, Schmitz M, Mildner A, Dell’Anna-Pudlik J, Leucker M, Radermacher K (2018) Extended device profiles and testing procedures for the approval process of integrated medical devices using the IEEE 11073 communication standard. Biomed Eng Technol 63:95–103CrossRefGoogle Scholar
  26. 26.
    Benzko J, Krause L, Janß A, Marschollek B, Merz P, Dell’Anna J, Radermacher K (2016) Modular user interface design for integrated surgical workplaces. Biomed Eng Technol 61:183–197Google Scholar
  27. 27.
    Flemisch FO, Adams CA, Conway SR, Goodrich KH, Palmer MT, Schutte PC (2003) The H-Metaphor as a guideline for vehicle automation and interaction. NASA Langley Research Center, Hampton, VAGoogle Scholar
  28. 28.
    Abbink DA, Mulder M, Boer ER (2012) Haptic shared control: smoothly shifting control authority? Cogn Technol Work 14:19–28CrossRefGoogle Scholar
  29. 29.
    Flemisch F, Heesen M, Hesse T, Kelsch J, Schieben A, Beller J (2012) Towards a dynamic balance between humans and automation: authority, ability, responsibility and control in shared and cooperative control situations. Cogn Technol Work 14:3–18CrossRefGoogle Scholar
  30. 30.
    Radermacher K, de la Fuente M, Brandt G, Zimolong A, Schkommodau E, Portheine F, Rau G (2002) Computer-und Robotertechnik für die bildgeführte Orthopädische Chirurgie (Computer and Robot Technology for Image guided Orthopaedic Surgery). at-Automatisierungstechnik Methoden und Anwendungen der Steuerungs-, Regelungs-und Informationstechnik 50:317Google Scholar
  31. 31.
    de Winter JCF, Dodou D (2011) Preparing drivers for dangerous situations: a critical reflection on continuous shared control. In: 2011 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, New York, pp 1050–1056Google Scholar
  32. 32.
    Lee JD, Seppelt BD (2009) Human factors in automation design. In: Nof SY (ed) Springer handbook of automation. Springer, Berlin, Heidelberg, pp 417–436CrossRefGoogle Scholar
  33. 33.
    Wickens CD, Hollands JG, Banbury S, Parasuraman R (2013) Engineering psychology and human performance. Pearson, LondonGoogle Scholar
  34. 34.
    Rasmussen J (1983) Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans Syst Man Cybern SMC-13:257–266.  https://doi.org/10.1109/tsmc.1983.6313160 CrossRefGoogle Scholar
  35. 35.
    Reason J (1990) Human error. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. 36.
    Radermacher K (1999) Computerunterstützte Operationsplanung und-ausführung mittels individueller Bearbeitungsschablonen in der Orthopädie. ShakerGoogle Scholar
  37. 37.
    Enayati N, De Momi E, Ferrigno G (2016) Haptics in robot-assisted surgery: challenges and benefits. IEEE Rev Biomed Eng 9:49–65.  https://doi.org/10.1109/rbme.2016.2538080 CrossRefPubMedGoogle Scholar
  38. 38.
    Weber EH (1978) The sense of touch. Academic Press, BerlinGoogle Scholar
  39. 39.
    Van Der Meijden OAJ, Schijven MP (2009) The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc Other Interv Tech 23:1180–1190.  https://doi.org/10.1007/s00464-008-0298-x CrossRefGoogle Scholar
  40. 40.
    TransEnterix Announces US 510(k) FDA Clearance for Senhance Surgical Robotic System | TransEnterix, Inc. http://ir.transenterix.com/news-releases/news-release-details/transenterix-announces-us-510k-fda-clearance-senhance-surgical. Accessed 12 July 2018
  41. 41.
    Wagner CR (2006) Force feedback in surgery: physical constraints and haptic information. Harvard University, CambridgeGoogle Scholar
  42. 42.
    Schneider O, Troccaz J (2001) A six-degree-of-freedom passive arm with dynamic constraints (PADyC) for cardiac surgery application: preliminary experiments. Comput Aided Surg 6:340–351CrossRefPubMedGoogle Scholar
  43. 43.
    Hagag B, Abovitz R, Kang H, Schmitz B, Conditt M (2011) RIO: robotic-arm interactive orthopedic system MAKOplasty: user interactive haptic orthopedic robotics. In: Rosen J, Hannaford B, Satava RM (eds) Surgical robotics. Springer, Boston, pp 219–246CrossRefGoogle Scholar
  44. 44.
    Escobar PF, Knight J, Kroh M, Chalikonda S, Kaouk J, Stein R (2012) Single-port hysterectomy with pelvic lymph node dissection in the porcine model: feasibility and validation of a novel robotic lightweight endoscope positioner. Gynecol Surg 9:97–101CrossRefGoogle Scholar
  45. 45.
    Pandalai S, Kavanagh DO, Neary P (2010) Robotic assisted laparoscopic colectomy. Ir Med J 21:1701–1708Google Scholar
  46. 46.
    Nathan C-AO, Chakradeo V, Malhotra K, D’agostino H, Patwardhan R (2006) The voice-controlled robotic assist scope holder AESOP for the endoscopic approach to the sella. Skull Base 16:123–131CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Product Detail—Freehand MIS Solutions. http://freehandsurgeon.com/Products/Detail?id=2. Accessed 12 July 2018
  48. 48.
    Guthart GS, Salisbury JK (2000) The Intuitive/sup TM/telesurgery system: overview and application. In: Proceedings. ICRA’00. IEEE international conference on robotics and automation, 2000. IEEE, New York, pp 618–621Google Scholar
  49. 49.
    Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery: a current perspective. Ann Surg 239:14CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Altendorf E, Weßel G, Baltzer M, Canpolat Y, Flemisch F (2016) Joint decision making and cooperative driver–vehicle interaction during critical driving situations. i-com 15:265–281CrossRefGoogle Scholar
  51. 51.
    Peon AR, Prattichizzo D (2013) Reaction times to constraint violation in haptics: comparing vibration, visual and audio stimuli. In: World haptics conference (WHC), 2013. IEEE, New York, pp 657–661Google Scholar
  52. 52.
    Mack MJ (2001) Minimally invasive and robotic surgery. Jama 285:568–572CrossRefPubMedGoogle Scholar
  53. 53.
    Mezger U, Jendrewski C, Bartels M (2013) Navigation in surgery. Langenbeck’s Arch Surg 398:501–514CrossRefGoogle Scholar
  54. 54.
    Troccaz J, Peshkin M, Davies B (1998) Guiding systems for computer-assisted surgery: introducing synergistic devices and discussing the different approaches. Med Image Anal 2:101–119CrossRefPubMedGoogle Scholar
  55. 55.
    Vitiello V, Kwok K-W, Yang G-Z (2012) Introduction to robot-assisted minimally invasive surgery (MIS). In: Gomes P (ed) Medical robotics. Minimally invasive surgery. Elsevier, Amsterdam, pp 1–P1Google Scholar
  56. 56.
    Hoeckelmann M, Rudas IJ, Fiorini P, Kirchner F, Haidegger T (2015) Current capabilities and development potential in surgical robotics. Int J Adv Robot Syst 12:61CrossRefGoogle Scholar
  57. 57.
    Cinquin P, Bainville E, Barbe C, Bittar E, Bouchard V, Bricault L, Champleboux G, Chenin M, Chevalier L, Delnondedieu Y (1995) Computer assisted medical interventions. IEEE Eng Med Biol Mag 14:254–263CrossRefGoogle Scholar
  58. 58.
    Davies B (2000) A review of robotics in surgery. Proc Inst Mech Eng Part H J Eng Med 214:129–140CrossRefGoogle Scholar
  59. 59.
    Follmann A, Korff A, Kunze S, Schmieder K, Radermacher K (2010) Protection of dura mater using a semiautomatic trepanation system. Int J Comput Assist Radiol Surg 5:311–312Google Scholar
  60. 60.
    Ang WT, Riviere CN, Khosla PK (2001) Design and implementation of active error canceling in hand-held microsurgical instrument. In: Proceedings. 2001 IEEE/RSJ international conference on intelligent robots and systems, 2001. IEEE, New York, pp 1106–1111Google Scholar
  61. 61.
    Rodriguez y Baena F, Davies B (2010) Robotic surgery: from autonomous systems to intelligent tools. Robotica 28:163–170CrossRefGoogle Scholar
  62. 62.
    Digioia AM, Kanade T, Wells P (1996) Final report for the second international workshop on robotics and computer assisted medical interventions. In: Computer aided surgery, pp 69–101Google Scholar
  63. 63.
    Yang S (2015) Handheld micromanipulator for robot-assisted microsurgery. Dissertation. Robotics Institute, Carnegie Mellon UniversityGoogle Scholar
  64. 64.
    Wagner A, Pott PP, Schwarz ML, Scharf H-P, Weiser P, Köpfle A, Männer R, Badreddin E (2004) Control of a handheld robot for orthopaedic surgery. IFAC Proc 37:477–482CrossRefGoogle Scholar
  65. 65.
    Comparetti MD, De Momi E, De Lorenzo D, Beyl T, Raczkowsky J, Ferrigno G (2012) Safe surgical robotic system and workflow design in the active project for awake neurosurgery. In: Proceedings of the 2012 IEEE international conference on intelligent robots and systems (IROS, Vilamoura), workshop on safety in human–robot coexistence and interaction: how can standardization and research benefit from each otherGoogle Scholar
  66. 66.
    Davies B, Starkie S, Harris SJ, Agterhuis E, Paul V, Auer LM (2000) Neurobot: a special-purpose robot for neurosurgery. In: Proceedings. ICRA’00. IEEE international conference on robotics and automation, 2000. IEEE, New York, pp 4103–4108Google Scholar
  67. 67.
    MYNUTIA. http://www.mynutia.com/. Accessed 18 July 2018
  68. 68.
    Strauss G, Koulechov K, Richter R, Dietz A, Trantakis C, Lüth T (2005) Navigated control in functional endoscopic sinus surgery. Int J Med Robot Comput Assist Surg 1:31–41CrossRefGoogle Scholar
  69. 69.
    Surgeons | medtech. http://www.medtech.fr/en/surgeons. Accessed 18 July 2018
  70. 70.
    Chng C-B, Ho Y, Chui C-K (2015) Automation of retinal surgery: a shared control robotic system for laser ablation. In: 2015 IEEE international conference on information and automation. IEEE, New York, pp 1957–1962Google Scholar
  71. 71.
    Kang H, Wen JT (2001) Endobot: a robotic assistant in minimally invasive surgeries. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation, 2001. IEEE, New York, pp 2031–2036Google Scholar
  72. 72.
    Tadano K, Kawashima K, Kojima K, Tanaka N (2010) Development of a pneumatic surgical manipulator IBIS IV. J Robot Mechatron 22:179–188CrossRefGoogle Scholar
  73. 73.
    M7 Surgical Robot | SRI International. https://www.sri.com/engage/products-solutions/m7-surgical-robot. Accessed 18 July 2018
  74. 74.
    Hagn U, Konietschke R, Tobergte A, Nickl M, Jörg S, Kübler B, Passig G, Gröger M, Fröhlich F, Seibold U (2010) DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int J Comput Assist Radiol Surg 5:183–193CrossRefPubMedGoogle Scholar
  75. 75.
    Hendrix R (2011) Robotically assisted eye surgery: a haptic master console. Tech Univ Eindhoven, EindhovenGoogle Scholar
  76. 76.
    Das H, Ohm TIM, Boswell C, Steele ROB, Rodriguez G (2001) Robot-assisted microsurgery development at JPL. Patent Med 85Google Scholar
  77. 77.
    Nawrat Z, Kostka P (2008) Robin heart–perspectives of application of mini invasive tools in cardiac surgery. In: Bozovic V (ed) Medical robotics. InTech, London, pp 265–290Google Scholar
  78. 78.
    Senhance Surgery—Robotic Laparoscopic Surgery. https://transenterix.com/features/. Accessed 18 July 2018
  79. 79.
    Surgica Robotica—Medical Technology Solutions. http://www.surgicarobotica.com/. Accessed 18 July 2018
  80. 80.
    Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg J, Rha KH, Schurr M, Kaouk J, Patel V (2017) Future of robotic surgery in urology. BJU Int 120:822–841CrossRefPubMedGoogle Scholar
  81. 81.
    Sutherland GR, Latour I, Greer AD (2008) Integrating an image-guided robot with intraoperative MRI. IEEE Eng Med Biol Mag 27:59–65CrossRefPubMedGoogle Scholar
  82. 82.
    Marescaux J, Rubino F (2003) The ZEUS robotic system: experimental and clinical applications. Surg Clin North Am 83:1305–1315CrossRefPubMedGoogle Scholar
  83. 83.
    Massie TH (1993) Design of a three degree of freedom force-reflecting haptic interface. Dissertation. Massachusetts Institute of TechnologyGoogle Scholar
  84. 84.
    O’Malley M, Goldfarb M (2002) The effect of force saturation on the haptic perception of detail. IEEE/ASME Trans Mechatron 7:280–288CrossRefGoogle Scholar
  85. 85.
    Sutter PH, Iatridis JC, Thakor NV (1989) Response to reflected-force feedback to fingers in teleoperations. In: Proceedings of the NASA conference on space telerobotics, vol 4, pp 65–74Google Scholar
  86. 86.
    van Oosterhout J, Wildenbeest JGW, Boessenkool H, Heemskerk CJM, de Baar MR, van der Helm FCT, Abbink DA (2015) Haptic shared control in tele-manipulation: effects of inaccuracies in guidance on task execution. IEEE Trans Haptics 8:164–175CrossRefPubMedGoogle Scholar
  87. 87.
    Smisek J, van Paassen MM, Schiele A (2015) Haptic guidance in bilateral teleoperation: effects of guidance inaccuracy. In: World haptics conference (WHC), 2015 IEEE. IEEE, New York, pp 500–505Google Scholar

Copyright information

© CARS 2019

Authors and Affiliations

  1. 1.Helmholtz Institute for Biomedical EngineeringAachenGermany

Personalised recommendations