Advertisement

Multi-organ segmentation of the head and neck area: an efficient hierarchical neural networks approach

  • Elias TappeinerEmail author
  • Samuel Pröll
  • Markus Hönig
  • Patrick F. Raudaschl
  • Paolo Zaffino
  • Maria F. Spadea
  • Gregory C. Sharp
  • Rainer Schubert
  • Karl Fritscher
Original Article
  • 78 Downloads

Abstract

Purpose

In radiation therapy, a key step for a successful cancer treatment is image-based treatment planning. One objective of the planning phase is the fast and accurate segmentation of organs at risk and target structures from medical images. However, manual delineation of organs, which is still the gold standard in many clinical environments, is time-consuming and prone to inter-observer variations. Consequently, many automated segmentation methods have been developed.

Methods

In this work, we train two hierarchical 3D neural networks to segment multiple organs at risk in the head and neck area. First, we train a coarse network on size-reduced medical images to locate the organs of interest. Second, a subsequent fine network on full-resolution images is trained for a final accurate segmentation. The proposed method is purely deep learning based; accordingly, no pre-registration or post-processing is required.

Results

The approach has been applied on a publicly available computed tomography dataset, created for the MICCAI 2015 Auto-Segmentation challenge. In an extensive evaluation process, the best configurations for the trained networks have been determined. Compared to the existing methods, the presented approach shows state-of-the-art performance for the segmentation of seven different structures in the head and neck area.

Conclusion

We conclude that 3D neural networks outperform the most existing model- and atlas-based methods for the segmentation of organs at risk in the head and neck area. The ease of use, high accuracy and the test time efficiency of the method make it promising for image-based treatment planning in clinical practice.

Keywords

Multi-organ segmentation Neural network Head and neck Radiotherapy 

Notes

Compliance with ethical standards

Conflict of interest

Elias Tappeiner, Samuel Pröll, Markus Hönig, Patrick F. Raudaschl, Paolo Zaffino, Maria F. Spadea, Gregory C. Sharp, Rainer Schubert, Karl Fritscher declare to have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:730.  https://doi.org/10.3322/caac.21387 Google Scholar
  2. 2.
    Raudaschl PF, Zaffino P, Sharp GC, Spadea MF, Chen A, Dawant BM, Albrecht T, Gass T, Langguth C, Lthi M, Jung F, Knapp O, Wesarg S, Mannion-Haworth R, Bowes M, Ashman A, Guillard G, Brett A, Vincent G, Orbes-Arteaga M, Córdenas-Peña D, Castellanos-Dominguez G, Aghdasi N, Li Y, Berens A, Moe K, Hannaford B, Schubert R, Fritscher KD (2017) Evaluation of segmentation methods on head and neck CT: auto-segmentation challenge 2015. Med Phys 44(5):2020–2036.  https://doi.org/10.1002/mp.12197 CrossRefGoogle Scholar
  3. 3.
    Sharp G, Fritscher KD, Pekar V, Peroni M, Shusharina N, Veeraraghavan H, Yang J (2014) Vision 20/20: perspectives on automated image segmentation for radiotherapy. Med Phys 41(5):50902.  https://doi.org/10.1118/1.4871620 CrossRefGoogle Scholar
  4. 4.
    Ibragimov B, Xing L (2017) Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med Phys 44(2):547557.  https://doi.org/10.1002/mp.12045 CrossRefGoogle Scholar
  5. 5.
    Fritscher K, Raudaschl P, Zaffino P, Spadea MF, Sharp GC, Schubert R (2016) Deep neural networks for fast segmentation of 3D medical images. Med Image Comput Comput Assist Interv 158165.  https://doi.org/10.1007/978-3-319-46720-7
  6. 6.
    Ren X, Xiang L, Nie D, Shao Y, Zhang H, Shen D, Wang Q (2018) Interleaved 3DCNN s for joint segmentation of small-volume structures in head and neck CT images. Med Phys 45(5):2063–2075.  https://doi.org/10.1002/mp.12837 CrossRefGoogle Scholar
  7. 7.
    Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. Med Image Comput Comput Assist Interv 424–432(1606):06650Google Scholar
  8. 8.
    Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Med Image Comput Comput Assist Interv 234241.  https://doi.org/10.1007/978-3-319-24574-4_28
  9. 9.
    Milletari F, Navab N, Ahmadi SA (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. Vision 3D:565–571.  https://doi.org/10.1109/3DV.2016.79 Google Scholar
  10. 10.
    He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. Comput Vis Pattern Recognit 770778.  https://doi.org/10.3389/fpsyg.2013.00124
  11. 11.
    Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ (2017) Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support 240–248.  https://doi.org/10.1007/978-3-319-67558-9_28
  12. 12.
    Brosch T, Yoo Y, Tang LY, Li DK, Traboulsee A, Tam R (2015) Deep convolutional encoder networks for multiple sclerosis lesion segmentation. Med Image Comput Comput Assist Interv 3–11.  https://doi.org/10.1007/978-3-319-24574-4_1
  13. 13.
    Kamnitsas K, Ledig C, Newcombe VFJ, Simpson PJ, Kane DA, Menon KD, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78.  https://doi.org/10.1016/j.media.2016.10.004 CrossRefGoogle Scholar
  14. 14.
    Li W, Wang G, Fidon L, Ourselin S, Cardoso MJ, Vercauteren T (2017) On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. Inf Process Med Imaging 348–360.  https://doi.org/10.1007/978-3-319-59050-9_28
  15. 15.
    Tappeiner E, Pröll S, Hönig M, Raudaschl FP, Zaffino P, Spadea FM, Sharp CG, Schubert R, Fritscher K (2018) Efficient multi-organ segmentation of the head and neck area using hierarchical neural networks. In: Computer assisted radiology and surgery proceedings of the 32nd international congress, pp 37–38.  https://doi.org/10.1007/s11548-018-1766-y
  16. 16.
    Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv preprint. arXiv:1606.00915
  17. 17.
    Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson RB, Pereira PS, Clarkson JM, Barratt DC (2017) Towards image-guided pancreas and biliary endoscopy: automatic multi-organ segmentation on abdominal CT with dense dilated networks. Med Image Comput Comput Assist Interv 728–736.  https://doi.org/10.1007/978-3-319-66182-7_83
  18. 18.
    Roth HR, Oda H, Hayashi Y, Oda M, Shimizu N, Fujiwara, M, Misawa K, Mori K (2017) Hierarchical 3D fully convolutional networks for multi-organ segmentation. arXiv preprint. arXiv:1704.06382
  19. 19.
    Gibson E, Li W, Sudre C, Fidon L, Shakir ID, Wang G, Eaton-Rosen Z, Gray R, Doel T, Hu Y, Whyntie T, Nachev P, Modat M, Barratt CD, Ourselin S, Cardoso MJ, Vercauteren T (2017) NiftyNet: a deep-learning platform for medical imaging. arXiv preprint. arXiv:1709.03485
  20. 20.
    Luo W, Li Y, Urtasun R, Zemel R (2017) Understanding the effective receptive field in deep convolutional neural networks. Adv Neural Inf Process Syst 4898–4906(1701):04128Google Scholar
  21. 21.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66.  https://doi.org/10.1109/TSMC.1979.4310076 CrossRefGoogle Scholar
  22. 22.
    Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980
  23. 23.
    Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302.  https://doi.org/10.2307/1932409 CrossRefGoogle Scholar
  24. 24.
    Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863.  https://doi.org/10.1109/34.232073 CrossRefGoogle Scholar
  25. 25.
    Jung F, Knapp O, Wesarg S (2015) CoSMo—coupled shape model segmentation. Head and neck auto-segmentation challenge MICCAI Munich. http://midasjournal.org/browse/publication/970
  26. 26.
    Mannion-Haworth R, Bowes M, Ashman A, Guillard G, Brett A, Vincent G (2015) Fully automatic segmentation of head and neck organs using active appearance models. Head and neck auto-segmentation challenge MICCAI Munich. http://midasjournal.org/browse/publication/967
  27. 27.
    Albrecht T, Gass T, Langguth C, Lüthi M (2015) Multi atlas segmentation with active shape model refinement for multiorgan segmentation in head and neck cancer radiotherapy planning. Head and neck auto-segmentation challenge MICCAI Munich. http://midasjournal.org/browse/publication/968
  28. 28.
    Orbes-Arteaga M, Córdenas-Peña D, Castellanos-Dominguez G (2015) Head and neck auto segmentation challenge based on non-local generative models. Head and neck auto-segmentation challenge MICCAI Munich. http://midasjournal.org/browse/publication/965
  29. 29.
    Aghdasi N, Li Y, Berens A, Moe K, Hannaford B (2015) Head and neck segmentation based on anatomical knowledge. Head and neck auto-segmentation challenge MICCAI Munich. http://midasjournal.org/browse/publication/971
  30. 30.
    Chen A, Dawant BM (2015) A multi-atlas approach for the automatic segmentation of multiple structures in head and neck CT images. Head and neck auto-segmentation challenge MICCAI Munich. http://midasjournal.org/browse/publication/964

Copyright information

© CARS 2019

Authors and Affiliations

  • Elias Tappeiner
    • 1
    Email author
  • Samuel Pröll
    • 1
  • Markus Hönig
    • 1
  • Patrick F. Raudaschl
    • 1
  • Paolo Zaffino
    • 2
  • Maria F. Spadea
    • 2
  • Gregory C. Sharp
    • 3
  • Rainer Schubert
    • 1
  • Karl Fritscher
    • 1
  1. 1.Department of Biomedical Computer Science and MechatronicsUniversity for Health Sciences, Medical Informatics and TechnologyHallAustria
  2. 2.Department of Experimental and Clinical MedicineMagna Graecia University of CatanzaroCatanzaroItaly
  3. 3.Department of Radiation OncologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations