Influence of fiber connectivity in simulations of cardiac biomechanics

  • D GilEmail author
  • R Aris
  • A Borras
  • E Ramirez
  • R Sebastian
  • M Vazquez
Original Article



Personalized computational simulations of the heart could open up new improved approaches to diagnosis and surgery assistance systems. While it is fully recognized that myocardial fiber orientation is central for the construction of realistic computational models of cardiac electromechanics, the role of its overall architecture and connectivity remains unclear. Morphological studies show that the distribution of cardiac muscular fibers at the basal ring connects epicardium and endocardium. However, computational models simplify their distribution and disregard the basal loop. This work explores the influence in computational simulations of fiber distribution at different short-axis cuts.


We have used a highly parallelized computational solver to test different fiber models of ventricular muscular connectivity. We have considered two rule-based mathematical models and an own-designed method preserving basal connectivity as observed in experimental data. Simulated cardiac functional scores (rotation, torsion and longitudinal shortening) were compared to experimental healthy ranges using generalized models (rotation) and Mahalanobis distances (shortening, torsion).


The probability of rotation was significantly lower for ruled-based models [95% CI (0.13, 0.20)] in comparison with experimental data [95% CI (0.23, 0.31)]. The Mahalanobis distance for experimental data was in the edge of the region enclosing 99% of the healthy population.


Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity.


Cardiac electromechanical simulations Fiber connectivity Diffusion tensor imaging 



This work was funded by Spanish Projects DPI2015- 430 65286-R, 2017-SGR-1624, the CERCA Programme, the Serra Hunter Programme and the grant BES-2016-078042.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

Informed consent

This articles does not contain patient data.


  1. 1.
    Bishop M, Hales P, Plank G, Gavaghan DJ, Scheider J, Grau V (2009) Comparison of rule-based and dtmri-derived fibre architecture in a whole rat ventricular computational model. In: Functional imaging and modeling of the heart, pp 87–96Google Scholar
  2. 2.
    Carapella V, Bordas R, Pathmanathan P, Lohezic M, Schneider JE, Kohl P, Burrage K, Grau V (2014) Quantitative study of the effect of tissue microstructure on contraction in a computational model of rat left ventricle. PloS one 9(4):e92792. CrossRefGoogle Scholar
  3. 3.
    Carreras F, Garcia J, Gil D, Pujadas S, Li CH, Suarez-Arias R, Leta R, Alomar X, Ballester M, Pons-Llado G (2012) Left ventricular torsion and longitudinal shortening: two fundamental components of myocardial mechanics assessed by tagged cine-mri in normal subjects. Int J Cardiovasc Imaging 28(2):273–84CrossRefGoogle Scholar
  4. 4.
    Casero R, Burton R.A, Quinn T.A, Bollensdorff C, Hales P, Schneider J, Kohl P, Grau V (2010) Cardiac valve annulus manual segmentation using computer assisted visual feedback in three-dimensional image data. In: EMBC, pp 738–741Google Scholar
  5. 5.
    Ferreira PF, Kilner PJ, McGill LA, Nielles-Vallespin S, Scott AD, Ho SY, McCarthy KP, Haba M, Ismail T, Gatehouse P, Silva R, Lyon A, Prasad S, Firmin D (2014) In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J Cardiovasc Mag Res 16(87):1–16Google Scholar
  6. 6.
    Fritz T, Wieners C, Seemann G (2014) Simulation of the contraction of the ventricles in a human heart model including atria and pericardium. Biomech Model Mechanobiol 13:627–641CrossRefGoogle Scholar
  7. 7.
    Gil D, Borras A, Aris R, Vazquez M, Lafortune P, Houzeaux G, Aguado J, Ballester M, Li CH, Carreras F (2012) What a difference in biomechanics cardiac fiber makes. In: STACOMGoogle Scholar
  8. 8.
    Gonzalez Tendero A, Zhang C, Balicevic V, Cardenes R, Loncaric S, Butakoff C, Paun B, Bonnin A, Garcia-Canadilla P, Munoz-Moreno E, Gratacos E, Crispi F, Bijnens (2017) Whole heart detailed and quantitative anatomy, myofibre structure and vasculature from x-ray phase-contrast synchrotron radiation-based micro computed tomography. EHJ Cardiovasc Imaging 18:732–41CrossRefGoogle Scholar
  9. 9.
    Gurev V, Lee T, Constantino J, Arevalo H, Trayanova NA (2011) Models of cardiac electromechanics based on individual hearts imaging data. Biomech Model Mechanobiol 10(3):295–306CrossRefGoogle Scholar
  10. 10.
    Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C, Faris OP, McVeigh E, Kass D, Miller MI, Winslow RL (2006) Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res 98(1):125–132CrossRefGoogle Scholar
  11. 11.
    Humphrey J (2001) Cardiovascular solid mechanics. Cells, tissues, and organs. Springer, BerlinGoogle Scholar
  12. 12.
    Hunter PJ, McCulloch AD, ter Keurs HE (1998) Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol 69(2–3):289–331CrossRefGoogle Scholar
  13. 13.
    Lafortune P, Arís R, Vázquez M, Houzeaux G (2012) Coupled electromechanical model of the heart: Parallel finite element formulation. Int J Numer Methods Biomed Eng 28:72–86CrossRefGoogle Scholar
  14. 14.
    Myerburg RJ, Nilsson K, Gelband H (1972) Physiology of canine intraventricular conduction and endocardial excitation. Circ Res 30(2):217–243CrossRefGoogle Scholar
  15. 15.
    O’Hara T, Virag L, Varro A, Rudy Y (2011) Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 7(5):e1002061CrossRefGoogle Scholar
  16. 16.
    Potse M, Dube B, Richer J, Vinet A, Gulrajani RM (2006) A comparison of monodomain and bidomain reaction–diffusion models for action potential propagation in the human heart. Trans Biomed Eng 53(12):2425–2435CrossRefGoogle Scholar
  17. 17.
    Poveda F, Gil D, Marti E, Andaluz A, Ballester M, Carreras F (2013) Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging multi-resolution tractography. Rev Esp Cardiaol 66(10):782–90CrossRefGoogle Scholar
  18. 18.
    Santiago A (2018) Fluid Electro Mechanical model of the human heart for supercomputers. Ph.D. Thesis. UPC, Barcelona, SpainGoogle Scholar
  19. 19.
    Savadjieva P, Strijkers GJ, Bakermans AJ, Piuze E, Zucker S, Siddiqi K (2012) Heart wall myofibers are arranged in minimal surfaces to optimize organ function. PNAS 109(24):9248–9253CrossRefGoogle Scholar
  20. 20.
    Scollan D, Holmes A, Winslow R, Forder J (1998) Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol 275:2308–2318Google Scholar
  21. 21.
    Sebastián R, Zimmerman V, Romero D, Sánchez-Quintana D, Frangi AF (2013) Characterization and modeling of the peripheral cardiac conduction system. IEEE Trans Med Imaging 32(1):45–55CrossRefGoogle Scholar
  22. 22.
    Streeter D, Spotnitz H, Patel D, Ross J, Sonnenblick E (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24:339–347CrossRefGoogle Scholar
  23. 23.
    Teh I, McClymont D, Burton R, Maguire M, Whittington H, Lygate C, Kohl P, Schneider J (2016) Resolving fine cardiac structures in rats with high-resolution dti. Nat Sci Rep 6(30573):1–14Google Scholar
  24. 24.
    Torrent Guasp F, Ballester M, Buckberg G, Carreras F, Flotats A, Carrio I, Ferreira A, Samuels L, Narula J (2001) Spatial orientation of the ventricular muscle band: physiologic contribution and surgical implications. J Thorac Cardiovasc Surg 122(2):389–92CrossRefGoogle Scholar
  25. 25.
    Toussaint N, Stoeck C, Schaeffter T, Kozerke S, Sermesant M, Batchelor P (2013) In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing. Med Image Anal 17:1243–1255CrossRefGoogle Scholar
  26. 26.
    Vázquez M, Arís R, Aguado-Sierra J, Houzeaux G, Santiago A, López M, Córdoba P, Rivero M, Cajas JC (2015) Alya red ccm: Hpc-based cardiac computational modeling. In: Selected topics of computational and experimental fluid mechanics pp 189–207Google Scholar

Copyright information

© CARS 2018

Authors and Affiliations

  1. 1.Computer Vision CenterUniversitat Autonoma de BarcelonaBellaterraSpain
  2. 2.Barcelona Supercomputing Center, BSC-CNSBarcelonaSpain
  3. 3.Universitat de ValenciaValenciaSpain
  4. 4.IIIA-CSICBellaterraSpain

Personalised recommendations