Advertisement

Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics

  • Felicitas J. Detmer
  • Bong Jae Chung
  • Fernando Mut
  • Martin Slawski
  • Farid Hamzei-Sichani
  • Christopher Putman
  • Carlos Jiménez
  • Juan R. Cebral
Original Article
  • 141 Downloads

Abstract

Purpose

Unruptured cerebral aneurysms pose a dilemma for physicians who need to weigh the risk of a devastating subarachnoid hemorrhage against the risk of surgery or endovascular treatment and their complications when deciding on a treatment strategy. A prediction model could potentially support such treatment decisions. The aim of this study was to develop and internally validate a model for aneurysm rupture based on hemodynamic and geometric parameters, aneurysm location, and patient gender and age.

Methods

Cross-sectional data from 1061 patients were used for image-based computational fluid dynamics and shape characterization of 1631 aneurysms for training an aneurysm rupture probability model using logistic group Lasso regression. The model’s discrimination and calibration were internally validated based on the area under the curve (AUC) of the receiver operating characteristic and calibration plots.

Results

The final model retained 11 hemodynamic and 12 morphological variables, aneurysm location, as well as patient age and gender. An adverse hemodynamic environment characterized by a higher maximum oscillatory shear index, higher kinetic energy and smaller low shear area as well as a more complex aneurysm shape, male gender and younger age were associated with an increased rupture risk. The corresponding AUC of the model was 0.86 (95% CI [0.85, 0.86], after correction for optimism 0.84).

Conclusion

The model combining variables from various domains was able to discriminate between ruptured and unruptured aneurysms with an AUC of 86%. Internal validation indicated potential for the application of this model in clinical practice after evaluation with longitudinal data.

Keywords

Cerebral aneurysm Risk factors Hemodynamics Shape Rupture Prediction 

Notes

Funding

This study was funded by the National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH-NINDS, Grant #R21NS094780).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Supplementary material

11548_2018_1837_MOESM1_ESM.pdf (293 kb)
Supplementary material 1 (PDF 293 kb)

References

  1. 1.
    Rinkel GJ, Djibuti M, van Gijn J (1998) Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29:251–259CrossRefPubMedGoogle Scholar
  2. 2.
    Vlak MH, Algra A, Brandenburg R, Rinkel GJ (2011) Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 10:626–636.  https://doi.org/10.1016/s1474-4422(11)70109-0 CrossRefPubMedGoogle Scholar
  3. 3.
    Rivero-Arias O, Gray A, Wolstenholme J (2010) Burden of disease and costs of aneurysmal subarachnoid haemorrhage (aSAH) in the United Kingdom. Cost Eff Resour Alloc 8:6.  https://doi.org/10.1186/1478-7547-8-6 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang G, Zhang Z, Ayala C, Dunet DO, Fang J, George MG (2014) Costs of hospitalization for stroke patients aged 18–64 years in the United States. J Stroke Cerebrovasc Dis 23:861–868.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.017 CrossRefPubMedGoogle Scholar
  5. 5.
    Dodel R, Winter Y, Ringel F, Spottke A, Gharevi N, Muller I, Klockgether T, Schramm J, Urbach H, Meyer B (2010) Cost of illness in subarachnoid hemorrhage: a German longitudinal study. Stroke 41:2918–2923.  https://doi.org/10.1161/strokeaha.110.586826 CrossRefPubMedGoogle Scholar
  6. 6.
    Wiebers DO, Whisnant JP, Huston J, Meissner I, Brown RD, Piepgras DG, Forbes GS, Thielen K, Nichols D, O’Fallon WM, Peacock J, Jaeger L, Kassell NF, Kongable-Beckman GL, Torner JC (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362:103–110CrossRefPubMedGoogle Scholar
  7. 7.
    Juvela S, Poussa K, Lehto H, Porras M (2013) Natural history of unruptured intracranial aneurysms: a long-term follow-up study. Stroke 44:2414–2421.  https://doi.org/10.1161/strokeaha.113.001838 CrossRefPubMedGoogle Scholar
  8. 8.
    Japan Investigators UCAS, Morita A, Kirino T, Hashi K, Aoki N, Fukuhara S, Hashimoto N, Nakayama T, Sakai M, Teramoto A, Tominari S, Yoshimoto T (2012) The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med 366:2474–2482.  https://doi.org/10.1056/nejmoa1113260 CrossRefGoogle Scholar
  9. 9.
    Gabriel RA, Kim H, Sidney S, McCulloch CE, Singh V, Johnston SC, Ko NU, Achrol AS, Zaroff JG, Young WL (2010) Ten-year detection rate of brain arteriovenous malformations in a large, multiethnic, defined population. Stroke 41:21–26.  https://doi.org/10.1161/strokeaha.109.566018 CrossRefPubMedGoogle Scholar
  10. 10.
    Cebral JR, Raschi M (2013) Suggested connections between risk factors of intracranial aneurysms: a review. Ann Biomed Eng 41:1366–1383.  https://doi.org/10.1007/s10439-012-0723-0 CrossRefPubMedGoogle Scholar
  11. 11.
    Ujiie H, Tamano Y, Sasaki K, Hori T (2001) Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 48:495–502 (discussion 502-3) CrossRefPubMedGoogle Scholar
  12. 12.
    Kleinloog R, de Mul N, Verweij BH, Post JA, Rinkel GJE, Ruigrok YM (2017) Risk factors for intracranial aneurysm rupture: a systematic review. Neurosurgery.  https://doi.org/10.1093/neuros/nyx238 CrossRefGoogle Scholar
  13. 13.
    Ishibashi T, Murayama Y, Urashima M, Saguchi T, Ebara M, Arakawa H, Irie K, Takao H, Abe T (2009) Unruptured intracranial aneurysms: incidence of rupture and risk factors. Stroke 40:313–316.  https://doi.org/10.1161/strokeaha.108.521674 CrossRefPubMedGoogle Scholar
  14. 14.
    Greving JP, Wermer MJ, Brown RD, Morita A, Juvela S, Yonekura M, Ishibashi T, Torner JC, Nakayama T, Rinkel GJ, Algra A (2014) Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol 13:59–66.  https://doi.org/10.1016/s1474-4422(13)70263-1 CrossRefPubMedGoogle Scholar
  15. 15.
    Woo D, Khoury J, Haverbusch MM, Sekar P, Flaherty ML, Kleindorfer DO, Kissela BM, Moomaw CJ, Deka R, Broderick JP (2009) Smoking and family history and risk of aneurysmal subarachnoid hemorrhage. Neurology 72:69–72.  https://doi.org/10.1212/01.wnl.0000338567.90260.46 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wermer MJH, van der Schaaf IC, Algra A, Rinkel GJE (2007) Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke 38:1404–1410.  https://doi.org/10.1161/01.str.0000260955.51401.cd CrossRefPubMedGoogle Scholar
  17. 17.
    Tominari S, Morita A, Ishibashi T, Yamazaki T, Takao H, Murayama Y, Sonobe M, Yonekura M, Saito N, Shiokawa Y, Date I, Tominaga T, Nozaki K, Houkin K, Miyamoto S, Kirino T, Hashi K, Nakayama T, for the Unruptured Cerebral Aneurysm Study Japan Investigators (2015) Prediction model for 3-year rupture risk of unruptured cerebral aneurysms in Japanese patients. Ann Neurol 77:1050–1059.  https://doi.org/10.1002/ana.24400 CrossRefPubMedGoogle Scholar
  18. 18.
    Bisbal J, Engelbrecht G, Villa-Uriol M-C, Frangi AF (2011) Prediction of cerebral aneurysm rupture using hemodynamic, morphologic and clinical features: a data mining approach. In: Hameurlain A, Liddle SW, Schewe K-D, Zhou X (eds) Database and expert systems applications. Springer, Berlin, pp 59–73CrossRefGoogle Scholar
  19. 19.
    Xiang J, Yu J, Snyder KV, Levy EI, Siddiqui AH, Meng H (2016) Hemodynamic-morphological discriminant models for intracranial aneurysm rupture remain stable with increasing sample size. J Neurointerv Surg 8:104–110.  https://doi.org/10.1136/neurintsurg-2014-011477 CrossRefPubMedGoogle Scholar
  20. 20.
    Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 24:457–467CrossRefPubMedGoogle Scholar
  21. 21.
    Ford MD, Alperin N, Lee SH, Holdsworth DW, Steinman DA (2005) Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol Meas 26:477–488CrossRefPubMedGoogle Scholar
  22. 22.
    Cebral JR, Castro MA, Putman CM, Alperin N (2008) Flow-area relationship in internal carotid and vertebral arteries. Physiol Meas 29:585–594CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods App Mech Eng 158:155–196CrossRefGoogle Scholar
  24. 24.
    Mut F, Löhner R, Chien A, Tateshima S, Viñuela F, Putman CM, Cebral JR (2011) Computational hemodynamics framework for the analysis of cerebral aneurysms. Int J Numer Method Biomed Eng 27:822–839CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Byrne G, Mut F, Cebral JR (2014) Quantifying the large-scale hemodynamics of intracranial aneurysms. AJNR Am J Neuroradiol 35:333–338.  https://doi.org/10.3174/ajnr.a3678 CrossRefPubMedGoogle Scholar
  26. 26.
    Ma B, Harbaugh RE, Raghavan ML (2004) Three-dimensional geometrical characterization of cerebral aneurysms. Ann Biomed Eng 32:264–273CrossRefPubMedGoogle Scholar
  27. 27.
    Raghavan ML, Ma B, Harbaugh RE (2005) Quantified aneurysm shape and rupture risk. J Neurosurg 102:355–362CrossRefPubMedGoogle Scholar
  28. 28.
    Meier L, Van De Geer S, Bühlmann P (2008) The group lasso for logistic regression: group Lasso for logistic regression. J R Stat Soc Ser B Stat Methodol 70:53–71.  https://doi.org/10.1111/j.1467-9868.2007.00627.x CrossRefGoogle Scholar
  29. 29.
    Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B Stat Methodol 68:49–67.  https://doi.org/10.1111/j.1467-9868.2005.00532.x CrossRefGoogle Scholar
  30. 30.
    Simon N, Tibshirani R (2012) Standardization and the group Lasso penalty. Stat Sin.  https://doi.org/10.5705/ss.2011.075 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW (2010) Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 21:128–138.  https://doi.org/10.1097/ede.0b013e3181c30fb2 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Steyerberg EW (2009) Clinical prediction models: a practical approach to development, validation, and updating. Springer, New YorkCrossRefGoogle Scholar
  33. 33.
    Austin PC, Steyerberg EW (2014) Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Stat Med 33:517–535.  https://doi.org/10.1002/sim.5941 CrossRefPubMedGoogle Scholar
  34. 34.
    Kumar R, Indrayan A (2011) Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr 48:277–287CrossRefPubMedGoogle Scholar
  35. 35.
    Varma S, Simon R (2006) Bias in error estimation when using cross-validation for model selection. BMC Bioinform 7:91.  https://doi.org/10.1186/1471-2105-7-91 CrossRefGoogle Scholar
  36. 36.
    Weston J, Elisseeff A, Schölkopf B, Tipping M (2003) Use of the zero-norm with linear models and kernel methods. J Mach Learn Res 3:1439–1461Google Scholar
  37. 37.
    Bertsimas D, King A, Mazumder R (2016) Best subset selection via a modern optimization lens. Ann Stat 44:813–852.  https://doi.org/10.1214/15-aos1388 CrossRefGoogle Scholar
  38. 38.
    Bertsimas D, King A (2017) Logistic regression: from art to science. Stat Sci 32:367–384.  https://doi.org/10.1214/16-sts602 CrossRefGoogle Scholar
  39. 39.
    IBM ILOG CPLEX Optimization Studio. Version 12.6. http://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
  40. 40.
    R Core Team (2017) R: A language and environment for statistical computing. Version 3.3.3, R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  41. 41.
    Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, Hopkins LN, Meng H (2008) Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63:185–197CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H (2011) Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42:144–152CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang Y, Yang X, Wang Y, Liu J, Li C, Jing L, Wang S, Li H (2014) Influence of morphology and hemodynamic factors on rupture of multiple intracranial aneurysms: matched-pairs of ruptured-unruptured aneurysms located unilaterally on the anterior circulation. BMC Neurol 14:253.  https://doi.org/10.1186/s12883-014-0253-5 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Duan G, Lv N, Yin J, Xu J, Hong B, Xu Y, Liu J, Huang Q (2016) Morphological and hemodynamic analysis of posterior communicating artery aneurysms prone to rupture: a matched case-control study. J Neurointerv Surg 8:47–51.  https://doi.org/10.1136/neurintsurg-2014-011450 CrossRefPubMedGoogle Scholar
  45. 45.
    Hamdan A, Barnes J, Mitchell P (2014) Subarachnoid hemorrhage and the female sex: analysis of risk factors, aneurysm characteristics, and outcomes: clinical article. J Neurosurg 121:1367–1373.  https://doi.org/10.3171/2014.7.jns132318 CrossRefPubMedGoogle Scholar
  46. 46.
    Matsukawa H, Uemura A, Fujii M, Kamo M, Takahashi O, Sumiyoshi S (2013) Morphological and clinical risk factors for the rupture of anterior communicating artery aneurysms. J Neurosurg 118:978–983.  https://doi.org/10.3171/2012.11.jns121210 CrossRefPubMedGoogle Scholar
  47. 47.
    Bijlenga P, Gondar R, Schilling S, Morel S, Hirsch S, Cuony J, Corniola M-V, Perren F, Rüfenacht D, Schaller K (2017) PHASES score for the management of intracranial aneurysm: a cross-sectional population-based retrospective study. Stroke 48:2105–2112.  https://doi.org/10.1161/strokeaha.117.017391 CrossRefPubMedGoogle Scholar
  48. 48.
    Janssen KJM, Vergouwe Y, Donders ART, Harrell FE, Chen Q, Grobbee DE, Moons KGM (2009) Dealing with missing predictor values when applying clinical prediction models. Clin Chem 55:994–1001.  https://doi.org/10.1373/clinchem.2008.115345 CrossRefPubMedGoogle Scholar
  49. 49.
    Xiang J, Varble N, Davies JM, Rai AT, Kono K, Sugiyama S, Binning MJ, Tawk RG, Choi H, Ringer AJ, Snyder KV, Levy EI, Hopkins LN, Siddiqui AH, Meng H (2017) Initial clinical experience with aview—a clinical computational platform for intracranial aneurysm morphology, hemodynamics, and treatment management. World Neurosurg 108:534–542.  https://doi.org/10.1016/j.wneu.2017.09.030 CrossRefPubMedGoogle Scholar
  50. 50.
    Evju Ø, Valen-Sendstad K, Mardal K-A (2013) A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions. J Biomech 46:2802–2808.  https://doi.org/10.1016/j.jbiomech.2013.09.004 CrossRefPubMedGoogle Scholar
  51. 51.
    Sforza D, Löhner R, Putman CM, Cebral JR (2010) Hemodynamic analysis of intracranial aneurysms with moving parent arteries: basilar tip aneurysms. IJNMBE Int J Numer Method Biomed Eng 26:1219–1227.  https://doi.org/10.1002/cnm.1385 CrossRefPubMedGoogle Scholar
  52. 52.
    Collins GS, Reitsma JB, Altman DG, Moons K (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMC Med 13:1.  https://doi.org/10.1186/s12916-014-0241-z CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© CARS 2018

Authors and Affiliations

  • Felicitas J. Detmer
    • 1
  • Bong Jae Chung
    • 1
  • Fernando Mut
    • 1
  • Martin Slawski
    • 2
  • Farid Hamzei-Sichani
    • 3
  • Christopher Putman
    • 4
  • Carlos Jiménez
    • 5
  • Juan R. Cebral
    • 1
  1. 1.Bioengineering Department, Volgenau School of EngineeringGeorge Mason UniversityFairfaxUSA
  2. 2.Statistics DepartmentGeorge Mason UniversityFairfaxUSA
  3. 3.Department of Neurological SurgeryUniversity of MassachusettsWorcesterUSA
  4. 4.Interventional Neuroradiology UnitInova Fairfax HospitalFalls ChurchUSA
  5. 5.Neurosurgery DepartmentUniversity of AntioquiaMedellínColombia

Personalised recommendations