Advertisement

Combined OCT distance and FBG force sensing cannulation needle for retinal vein cannulation: in vivo animal validation

  • M. OurakEmail author
  • J. Smits
  • L. Esteveny
  • G. Borghesan
  • A. Gijbels
  • L. Schoevaerdts
  • Y. Douven
  • J. Scholtes
  • E. Lankenau
  • T. Eixmann
  • H. Schulz-Hildebrandt
  • G. Hüttmann
  • M. Kozlovszky
  • G. Kronreif
  • K. Willekens
  • P. Stalmans
  • K. Faridpooya
  • M. Cereda
  • A. Giani
  • G. Staurenghi
  • D. Reynaerts
  • E. B. Vander Poorten
Original Article
  • 163 Downloads

Abstract

Purpose

Retinal vein cannulation is an experimental procedure during which a clot-dissolving drug is injected into an obstructed retinal vein. However, due to the fragility and minute size of retinal veins, such procedure is considered too risky to perform manually. With the aid of surgical robots, key limiting factors such as: unwanted eye rotations, hand tremor and instrument immobilization can be tackled. However, local instrument anatomy distance and force estimation remain unresolved issues. A reliable, real-time local interaction estimation between instrument tip and the retina could be a solution. This paper reports on the development of a combined force and distance sensing cannulation needle, and its experimental validation during in vivo animal trials.

Methods

Two prototypes are reported, relying on force and distance measurements based on FBG and OCT A-scan fibres, respectively. Both instruments provide an 80 \(\upmu \hbox {m}\) needle tip and have outer shaft diameters of 0.6 and 2.3 mm, respectively.

Results

Both prototypes were characterized and experimentally validated ex vivo. Then, paired with a previously developed surgical robot, in vivo experimental validation was performed. The first prototype successfully demonstrated the feasibility of using a combined force and distance sensing instrument in an in vivo setting.

Conclusion

The results demonstrate the feasibility of deploying a combined sensing instrument in an in vivo setting. The performed study provides a foundation for further work on real-time local modelling of the surgical scene. This paper provides initial insights; however, additional processing remains necessary.

Keywords

Retinal vein cannulation Cannulation needle Optical coherence tomography Fibre Bragg grating Surgical robotics 

Notes

Funding

This research was funded by the EU Framework Programme for Research and Innovation-Horizon 2020 (No. 645331) and an SB Fellowship of the Research Foundation-Flanders (1S41517N).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

This articles does not contain patient data.

References

  1. 1.
    Ambastha S, Umesh S, Dabir S, Asokan S (2016) Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device. J Biomed Opt 21(11):117002CrossRefGoogle Scholar
  2. 2.
    Asami T, Terasaki H, Ito Y, Sugita T, Kaneko H, Nishiyama J, Namiki H, Kobayashi M, Nishizawa N (2016) Development of a fiber-optic optical coherence tomography probe for intraocular use. Investig Opthalmol Vis Sci 57(9):OCT568–OCT574CrossRefGoogle Scholar
  3. 3.
    Balicki M, Han Jh, Iordachita I, Gehlbach P, Handa J, Taylor R, Kang J (2009) Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery. In: Medical image computing and computer-assisted intervention, pp 108–115Google Scholar
  4. 4.
    Borghesan G, Ourak M, Lankenau E, Hüttmann G, Schulz-Hildebrant H, Willekens K, Stalmans P, Reynaerts D, Vander Poorten E (2018) Single scan OCT-based retina detection for robot-assisted retinal vein cannulation. J Med Robot Res 3(02):1840005CrossRefGoogle Scholar
  5. 5.
    Bruyninckx H, Soetens P, Koninckx B (2003) The real-time motion control core of the Orocos project. In: IEEE international conference on robotics and automation, vol 2, pp 2766–2771Google Scholar
  6. 6.
    Du LT, Wessels IF, Underdahl JP, Auran JD (2001) Stereoacuity and depth perception decrease with increased instrument magnification: comparing a non-magnified system with lens loupes and a surgical microscope. Binocul Vis Strabismus Q 16(1):61–7Google Scholar
  7. 7.
    Ehlers JP, Srivastava SK, Feiler D, Noonan AI, Rollins AM, Tao YK (2014) Integrative Advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLoS ONE 9(8):e105224CrossRefGoogle Scholar
  8. 8.
    Ergeneman O, Pokki J, Počepcovà V, Hall H, Abbott JJ, Nelson BJ (2011) Characterization of puncture forces for retinal vein cannulation. J Med Devices 5(4):044504CrossRefGoogle Scholar
  9. 9.
    Gijbels A, Vander Poorten EB, Stalmans P, Reynaerts D (2015) Development and experimental validation of a force sensing needle for robotically assisted retinal vein cannulations. In: IEEE international conference on robotics and automation, pp 2270–2276Google Scholar
  10. 10.
    Gijbels A, Willekens K, Esteveny L, Stalmans P, Reynaerts D, Vander Poorten EB (2016) Towards a clinically applicable robotic assistance system for retinal vein cannulation. In: IEEE international conference on biomedical robotics and biomechatronics, pp 284–291Google Scholar
  11. 11.
    Gonenc B, Chamani A, Handa J, Gehlbach P, Taylor R, Iordachita I (2017) 3-DOF force-sensing motorized micro-forceps for robot-assisted vitreoretinal surgery. IEEE Sens 17(11):3526–3541CrossRefGoogle Scholar
  12. 12.
    Gonenc B, Iordachita I (2016) FBG-based transverse and axial force-sensing micro-forceps for retinal microsurgery. In: IEEE sensorsGoogle Scholar
  13. 13.
    Gonenc B, Taylor RH, Iordachita I, Gehlbach P, Handa J (2014) Force-sensing microneedle for assisted retinal vein cannulation. In: IEEE sensors proceedings, pp 698–701Google Scholar
  14. 14.
    Gonenc B, Tran N, Riviere CN, Gehlbach P, Taylor RH, Iordachita I (2015) Force-based puncture detection and active position holding for assisted retinal vein cannulation. In: IEEE/SICE/RSJ international conference on multisensor fusion and integration for intelligent systems, pp 322–327Google Scholar
  15. 15.
    Hayreh SS, Zimmerman MB, Podhajsky P (1994) Incidence of various types of retinal vein occlusion and their recurrence and demographic characteristics. Am J Ophthalmol 117(4):429–441CrossRefGoogle Scholar
  16. 16.
    He X, Handa J, Gehlbach P, Taylor RH, Iordachita I (2014) A submillimetric 3-DOF force sensing instrument with integrated fiber bragg grating for retinal microsurgery. IEEE Trans Biomed Eng 61(2):522–534CrossRefGoogle Scholar
  17. 17.
    Iordachita I, Sun Z, Balicki M, Kang JU, Phee SJ, Handa J, Gehlbach P, Taylor R (2009) A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery. Int J Comput Assist Radiol Surg 4(4):383–390CrossRefGoogle Scholar
  18. 18.
    Menciassi A, Eisinberg A, Scalari G, Anticoli C, Carrozza M, Dario P (2001) Force feedback-based microinstrument for measuring tissue properties and pulse in microsurgery. In: IEEE international conference on robotics and automation, vol 1, pp 626–631Google Scholar
  19. 19.
    Molaei A, Abedloo E, de Smet MD, Safi S, Khorshidifar M, Ahmadieh H, Khosravi MA, Daftarian N (2017) Toward the art of robotic-assisted vitreoretinal surgery. J Ophthalmic Vis Res 12:175–182Google Scholar
  20. 20.
    Noda Y, Ida Y, Tanaka S, Toyama T, Roggia MF, Tamaki Y, Sugita N, Mitsuishi M, Ueta T (2013) Impact of robotic assistance on precision of vitreoretinal surgical procedures. PLoS ONE 8:1–6Google Scholar
  21. 21.
    Olver J, Cassidy L (2005) Ophthalmology at a glance. Blackwell Science, HobokenGoogle Scholar
  22. 22.
    Peirs J, Clijnen J, Reynaerts D, Brussel HV, Herijgers P, Corteville B, Boone S (2004) A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens Actuators A 115(2–3):447–455CrossRefGoogle Scholar
  23. 23.
    Riviere C, Ang WT, Khosla P (2003) Toward active tremor canceling in handheld microsurgical instruments. IEEE Trans Robot Autom 19:793–800CrossRefGoogle Scholar
  24. 24.
    Rogers S, Mcintosh RL, Grad B, Journ D, Cheung N, Lim L, Wang JJ, Mitchell P, Kowalski JW, Nguyen H, Wong TY (2011) The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Popul Stud 117:1–14Google Scholar
  25. 25.
    Sjaarda RN, Glaser BM, Thompson JT, Murphy RP, Hanham A (1995) Distribution of iatrogenic retinal breaks in macular hole surgery. Ophthalmology 102(9):1387–1392CrossRefGoogle Scholar
  26. 26.
    Smits J, Mouloud O, Gijbels A, Esteveny L, Borghesan G, Schoevaerdts L, Willekens K, Stalmans P, Lankenau E, Schulz-Hildebrant H, Hüttmann G, Reynaerts D, Vander Poorten, E (2018) Development and experimental validation of a combined FBG force and OCT distance sensing needle for robot-assisted retinal vein cannulation. In: IEEE international conference on robotics and automationGoogle Scholar
  27. 27.
    Smits J, Ourak M, Gijbels A, Borghesan G, Esteveny L, Schoevaerdts L, Willekens K, Stalmans P, Lankenau E, Hüttmann G, Reynaerts D, Poorten EBV (2017) Combined force and distance sensing for robot-assisted vitreo-retinal surgery. In: Proceedings of the 7th joint workshop on new technologies for computer/robot assisted surgeryGoogle Scholar
  28. 28.
    Song C, Gehlbach PL, Kang JU (2012) Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography. Opt Express 20(21):23414–23421CrossRefGoogle Scholar
  29. 29.
    Tang WM, Han DP (2000) A study of surgical approaches to retinal vascular occlusions. Arch Ophthalmol 118(1):138–43CrossRefGoogle Scholar
  30. 30.
    Zhang X (2004) Silicon microsurgery-force sensor based on diffractive optical MEMS encoders. Sensor Rev 24(1):37–41CrossRefGoogle Scholar

Copyright information

© CARS 2018

Authors and Affiliations

  • M. Ourak
    • 1
    Email author
  • J. Smits
    • 1
  • L. Esteveny
    • 1
  • G. Borghesan
    • 1
  • A. Gijbels
    • 1
  • L. Schoevaerdts
    • 1
  • Y. Douven
    • 2
  • J. Scholtes
    • 2
  • E. Lankenau
    • 3
  • T. Eixmann
    • 4
  • H. Schulz-Hildebrandt
    • 4
  • G. Hüttmann
    • 4
  • M. Kozlovszky
    • 5
  • G. Kronreif
    • 5
  • K. Willekens
    • 6
  • P. Stalmans
    • 6
  • K. Faridpooya
    • 7
  • M. Cereda
    • 8
  • A. Giani
    • 8
  • G. Staurenghi
    • 8
  • D. Reynaerts
    • 1
  • E. B. Vander Poorten
    • 1
  1. 1.University of LeuvenLeuvenBelgium
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.OptoMedical Technologies GmbHLübeckGermany
  4. 4.Medical Laser Center Lübeck GmbHLübeckGermany
  5. 5.Austrian Center for Medical Innovation and Technology GmbhNeustadtAustria
  6. 6.University Hospitals LeuvenLeuvenBelgium
  7. 7.The Rotterdam Eye HospitalRotterdamThe Netherlands
  8. 8.The Eye ClinicUniversity of MilanMilanItaly

Personalised recommendations