Reliability and correlation analysis of computed methods to convert conventional 2D radiological hindfoot measurements to a 3D setting using weightbearing CT

  • A. BurssensEmail author
  • J. Peeters
  • M. Peiffer
  • R. Marien
  • T. Lenaerts
  • G. Vandeputte
  • J. Victor
Original Article



The exact radiographic assessment of the hindfoot alignment remains challenging. This is reflected in the different measurement methods available. Weightbearing CT (WBCT) has been demonstrated to be more accurate in hindfoot measurements. However, current measurements are still performed in 2D. This study wants to assess the use of computed methods to convert the former uniplanar hindfoot measurements obtained after WBCT towards a 3D setting.


Forty-eight patients, mean age of 39.6 ± 13.2 years, with absence of hindfoot pathology were included. A WBCT was obtained, and images were subsequently segmented and analyzed using computer-aided design operations. In addition to the hindfoot angle (HA), other ankle and hindfoot parameters such as the anatomical tibia axis, talocalcaneal axis (TCA), talocrural angle, tibial inclination (TI), talar tilt, and subtalar vertical angle were determined in 2D and 3D.


The mean \(\hbox {HA}_{2\mathrm{D}}\) was \(0.79^{\circ }\) of valgus ± 3.2 and the \(\hbox {HA}_{\mathrm{3D}}\) was \(8.08^{\circ }\) of valgus ± 6.5. These angles differed significantly from each other with a \(P<0.001\). The correlation between both showed to be good by \(\hbox {a}\) Pearson correlation coefficient (r) of 0.72 (\(P < 0.001\)). The \(\hbox {ICC}_{\mathrm{3D}}\) showed to be excellent when compared to the \(\hbox {ICC}_{\mathrm{2D}}\), which was good. Similar findings were obtained in other angles. The highest correlation was seen between the \(\hbox {TI}_{\mathrm{2D}}\) and \(\hbox {TI}_{\mathrm{3D}}\) (r = 0.83, \(P < 0.001\)) and an almost perfect agreement in the \(\hbox {TCA}_\mathrm{3D}\) (\(\hbox {ICC}_{\mathrm{3D}}=0.99\)).


This study shows a good and reliable correlation between the \(\hbox {HA}_{\mathrm{2D}}\) and \(\hbox {HA}_{\mathrm{3D}}\). However, the \(\hbox {HA}_{\mathrm{3D}}\) overcomes the shortcomings of inaccuracy and provides valuable spatial data that could be incorporated during computer-assisted surgery to assess the multiplanar correction of a hindfoot deformity.


Hindfoot alignment Weightbearing CT Computed radiology Hindfoot correction 



The authors wish to thank Ir. Karim Chellaoui, as a clinical engineer for his attributive remarks to the study design and thorough review of the statistics. The linguistic and structural support was provided by Maxwell Weinberg, research assistant at the University of Utah and Hannes Van Wynendaele, MLing of Ugent.

CT International Study Group (WBCT ISG), committee members are as follows: Richter M, Barg A, Lintz F, de Cesar Netto C and Burssens A. M Richter: Prof dr M Richter, MD, PhD. Head of the Department of Foot and Ankle Surgery in Rummelsberg and Nuremberg, Germany; A Barg: Prof dr A Barg, MD. Associate Professor of Orthopaedics, University Hospital of Utah, USA; F Lintz: dr F Lintz, Department Foot and Ankle Surgery, Clinique de L’Union in Toulouse, France; C de Cesar Netto: dr de Netto C, Department Foot and Ankle Surgery, Hospital for Special Surgery, NY, USA. France; Burssens A: Burssens A, MD Resident Orthopaedic Surgery, Department of Orthopaedic Surgery, Ghent University Hospital, De Pintelaan 185, 9000 Gent, Belgium.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest or acceptance of external funding.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent was not required.


  1. 1.
    Cobey JC (1976) Posterior roentgenogram of the foot. Clin Orthop Relat Res 118:202–207Google Scholar
  2. 2.
    Saltzman CL, El-Khoury GY (1995) The hindfoot alignment view. Foot Ankle Int 16(9):572–576CrossRefGoogle Scholar
  3. 3.
    Reilingh ML, Beimers L, Tuijthof GJM, Stufkens SAS, Maas M, van Dijk CN (2010) Measuring hindfoot alignment radiographically: the long axial view is more reliable than the hindfoot alignment view. Skelet Radiol 39(11):1103–1108. CrossRefGoogle Scholar
  4. 4.
    Buck FM, Hoffmann A, Mamisch-Saupe N, Espinosa N, Resnick D, Hodler J (2011) Hindfoot alignment measurements: rotation-stability of measurement techniques on hindfoot alignment view and long axial view radiographs. Am J Roentgenol 197(3):578–582CrossRefGoogle Scholar
  5. 5.
    Barg A, Amendola RL, Henninger HB, Kapron AL, Saltzman CL, Anderson AE (2015) Influence of ankle position and radiographic projection angle on measurement of supramalleolar alignment on the anteroposterior and hindfoot alignment views. Foot Ankle Int 36(11):1352–1361CrossRefGoogle Scholar
  6. 6.
    Ikoma K, Noguchi M, Nagasawa K, Maki M, Kido M, Hara Y, Kubo T (2013) A new radiographic view of the hindfoot. J Foot Ankle Res 6(1):48CrossRefGoogle Scholar
  7. 7.
    Richter M, Seidl B, Zech S, Hahn S (2014) PedCAT for 3D-imaging in standing position allows for more accurate bone position (angle) measurement than radiographs or CT. Foot Ankle Surg 20(3):201–207. CrossRefPubMedGoogle Scholar
  8. 8.
    Burssens A, Peeters J, Buedts K, Victor J, Vandeputte G (2016) Measuring hindfoot alignment in weight bearing CT: a novel clinical relevant measurement method. Foot Ankle Surg 22(4):233–238CrossRefGoogle Scholar
  9. 9.
    Colin F, Lang TH, Zwicky L, Hintermann B, Knupp M (2014) Subtalar joint configuration on weightbearing CT scan. Foot Ankle Int. CrossRefPubMedGoogle Scholar
  10. 10.
    Krähenbühl N, Tschuck M, Bolliger L, Hintermann B, Knupp M (2016) Orientation of the subtalar joint measurement and reliability using weightbearing CT scans. Foot Ankle Int 37(1):109–114CrossRefGoogle Scholar
  11. 11.
    Tuominen EK, Kankare J, Koskinen SK, Mattila KT (2013) Weight-bearing CT imaging of the lower extremity. Am J Roentgenol 200(1):146–148CrossRefGoogle Scholar
  12. 12.
    O’Connor JF, Cohen J (1978) Computerized tomography (CAT scan, CT scan) in orthopaedic surgery. J Bone Joint Surg Am 60(8):1096–1098CrossRefGoogle Scholar
  13. 13.
    Wicky S, Blaser P, Blanc C, Leyvraz P, Schnyder P, Meuli R (2000) Comparison between standard radiography and spiral CT with 3D reconstruction in the evaluation, classification and management of tibial plateau fractures. Euro Radiol 10(8):1227–1232CrossRefGoogle Scholar
  14. 14.
    te Stroet MA, Holla M, Biert J, van Kampen A (2011) The value of a CT scan compared to plain radiographs for the classification and treatment plan in tibial plateau fractures. Emerg Radiol 18(4):279–283CrossRefGoogle Scholar
  15. 15.
    Sanders R (2000) Current concepts review-displaced intra-articular fractures of the calcaneus. J Bone Joint Surg 82(2):225–250CrossRefGoogle Scholar
  16. 16.
    Auricchio F, Marconi S (2016) 3D printing: clinical applications in orthopaedics and traumatology. EFORT Open Rev 1(5):121–127CrossRefGoogle Scholar
  17. 17.
    Richter M (2013) Computer aided surgery in foot and ankle: applications and perspectives. Int Orthop 37(9):1737–1745CrossRefGoogle Scholar
  18. 18.
    Tack P, Victor J, Gemmel P, Annemans L (2016) 3D-printing techniques in a medical setting: a systematic literature review. BioMed Eng OnLine 15(1):115. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jacxsens M, Van Tongel A, Willemot LB, Mueller AM, Valderrabano V, De Wilde L (2015) Accuracy of the glenohumeral subluxation index in nonpathologic shoulders. J Shoulder Elb Surg 24(4):541–546CrossRefGoogle Scholar
  20. 20.
    Victor J, Premanathan A (2013) Virtual 3D planning and patient specific surgical guides for osteotomies around the knee. Bone Joint J 95(11 Supple A):153–158CrossRefGoogle Scholar
  21. 21.
    Audenaert EA, Baelde N, Huysse W, Vigneron L, Pattyn C (2011) Development of a three-dimensional detection method of cam deformities in femoroacetabular impingement. Skelet Radiol 40(7):921–927CrossRefGoogle Scholar
  22. 22.
    Hirschmann A, Pfirrmann CWA, Klammer G, Espinosa N, Buck FM (2013) Upright cone CT of the hindfoot: comparison of the non-weight-bearing with the upright weight-bearing position. Eur Radiol 24(3):553–558. CrossRefPubMedGoogle Scholar
  23. 23.
    de Cesar NC, Schon LC, Thawait GK, da Fonseca LF, Chinanuvathana A, Zbijewski WB, Siewerdsen JH, Demehri S (2017) Flexible adult acquired flatfoot deformity: comparison between weight-bearing and non-weight-bearing measurements using cone-beam computed tomography. JBJS 99(18):e98CrossRefGoogle Scholar
  24. 24.
    Burssens A, Van Herzele E, Leenders T, Clockaerts S, Buedts K, Vandeputte G, Victor J (2017) Weightbearing CT in normal hindfoot alignment: presence of a constitutional valgus? Foot Ankle Surg 23:16CrossRefGoogle Scholar
  25. 25.
    Barg A, Harris MD, Henninger HB, Amendola RL, Saltzman CL, Hintermann B, Anderson AE (2012) Medial distal tibial angle: comparison between weightbearing mortise view and hindfoot alignment view. Foot Ankle Int 33(8):655–661CrossRefGoogle Scholar
  26. 26.
    Neri T, Barthelemy R, Tourné Y (2017) Radiologic analysis of hindfoot alignment: comparison of Méary, long axial, and hindfoot alignment views. Orthop Traumatol Surg Res 103(8):1211–1216CrossRefGoogle Scholar
  27. 27.
    Dagneaux L, Moroney P, Maestro M (2017) Reliability of hindfoot alignment measurements from standard radiographs using the methods of Meary and Saltzman. Foot and Ankle Surg.
  28. 28.
    Iseki Y, Takahashi T, Takeda H, Tsuboi I, Imai H, Mashima N, Watanabe S, Yamamoto H (2009) Defining the load bearing axis of the lower extremity obtained from anterior–posterior digital radiographs of the whole limb in stance. Osteoarthr Cartil 17(5):586–591CrossRefGoogle Scholar
  29. 29.
    Guichet J-M, Javed A, Russell J, Saleh M (2003) Effect of the foot on the mechanical alignment of the lower limbs. Clin Orthop Relat Res 415:193–201CrossRefGoogle Scholar
  30. 30.
    Brage ME, Bennett CR, Whitehurst JB, Getty PJ, Toledano A (1997) Observer reliability in ankle radiographic measurements. Foot Ankle Int 18(6):324–329CrossRefGoogle Scholar
  31. 31.
    Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420CrossRefGoogle Scholar
  32. 32.
    Hamel J (2015) Calcaneal Z osteotomy for correction of subtalar hindfoot varus deformity. Oper Orthopädie Traumatol 27(4):308CrossRefGoogle Scholar
  33. 33.
    Lundberg A, Svensson O (1993) The axes of rotation of the talocalcaneal and talonavicular joints. Foot 3(2):65–70CrossRefGoogle Scholar
  34. 34.
    Almeida DF, Ruben RB, Folgado J, Fernandes PR, Audenaert E, Verhegghe B, De Beule M (2016) Fully automatic segmentation of femurs with medullary canal definition in high and in low resolution CT scans. Med Eng Phys 38(12):1474–1480CrossRefGoogle Scholar
  35. 35.
    Chen Y, Qiang M, Zhang K, Li H, Dai H (2015) A reliable radiographic measurement for evaluation of normal distal tibiofibular syndesmosis: a multi-detector computed tomography study in adults. J Foot Ankle Res 8(1):1CrossRefGoogle Scholar
  36. 36.
    Hansen M, Le L, Wertheimer S, Meyer E, Haut R (2006) Syndesmosis fixation: analysis of shear stress via axial load on 3.5-mm and 4.5-mm quadricortical syndesmotic screws. J Foot Ankle Surg 45(2):65–69CrossRefGoogle Scholar
  37. 37.
    Quill GE (2009) Reconstruction of multiplanar ankle and hindfoot deformity with intramedullary techniques. Foot Ankle Clin 14(3):533–547CrossRefGoogle Scholar
  38. 38.
    Van den Broeck J, Vereecke E, Wirix-Speetjens R, Vander Sloten J (2014) Segmentation accuracy of long bones. Med Eng Phys 36(7):949–953CrossRefGoogle Scholar
  39. 39.
    Al-Rawi B, Hassan B, Vandenberge B, Jacobs R (2010) Accuracy assessment of three-dimensional surface reconstructions of teeth from cone beam computed tomography scans. J Oral Rehabilit 37(5):352–358CrossRefGoogle Scholar
  40. 40.
    Rathnayaka K, Sahama T, Schuetz MA, Schmutz B (2011) Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Med Eng Phys 33(2):226–233CrossRefGoogle Scholar
  41. 41.
    Ebinger T, Goetz J, Dolan L, Phisitkul P (2013) 3D model analysis of existing CT syndesmosis measurements. Iowa Orthop J 33:40PubMedPubMedCentralGoogle Scholar
  42. 42.
    Stufkens SA, Barg A, Bolliger L, Stucinskas J, Knupp M, Hintermann B (2011) Measurement of the medial distal tibial angle. Foot Ankle Int 32(3):288–293CrossRefGoogle Scholar
  43. 43.
    Victor J, Van Doninck D, Labey L, Van Glabbeek F, Parizel P, Bellemans J (2009) A common reference frame for describing rotation of the distal femur. Bone Joint J 91(5):683–690Google Scholar
  44. 44.
    Lintz F, Barton T, Millet M, Harries WJ, Hepple S, Winson IG (2012) Ground reaction force calcaneal offset: a new measurement of hindfoot alignment. Foot Ankle Surg 18(1):9–14CrossRefGoogle Scholar
  45. 45.
    Arunakul M, Amendola A, Gao Y, Goetz JE, Femino JE, Phisitkul P (2013) Tripod index: a new radiographic parameter assessing foot alignment. Foot Ankle Int 34(10):1411–1420CrossRefGoogle Scholar
  46. 46.
    Lintz F, Welck M, Bernasconi A, Thornton B, James CNP, Singh D, Goldberg A (2017) 3D biometrics for hindfoot alignment using weightbearing CT. Foot Ankle Int. CrossRefPubMedGoogle Scholar
  47. 47.
    Ludlow JB, Ivanovic M (2014) Weightbearing CBCT, MDCT, and 2D imaging dosimetry of the foot and ankle. Int J Diag Imag 1(2):p1CrossRefGoogle Scholar
  48. 48.
    Barg A, Saltzman CL (2014) Single-stage supramalleolar osteotomy for coronal plane deformity. Curr Rev Musculoskelet Med 7(4):277–291CrossRefGoogle Scholar
  49. 49.
    Van Gestel L, Van Bouwel S, Somville J (2015) Surgical treatment of the adult acquired flexible flatfoot. Acta Orthop Belgica 81(2):172–183Google Scholar

Copyright information

© CARS 2018

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryGhent University HospitalGhentBelgium
  2. 2.AZ MonicaDeurneBelgium
  3. 3.Materialise N.V.LouvainBelgium
  4. 4.Department of Orthopaedic SurgeryH.-HartziekenhuisLierBelgium

Personalised recommendations