FEM-based elasticity reconstruction using ultrasound for imaging tissue ablation

  • Corin F. Otesteanu
  • Valery Vishnevsky
  • Orcun Goksel
Original Article



Success of ablation treatment depends on the accurate placement of the target ablation focus and the complete destruction of the pathological tissue. Thus, monitoring the formation, location, and size of the ablated lesion is essential. As ablated tissue gets stiffer, an option for ablation monitoring is ultrasound elastography, for imaging the tissue mechanical properties. Reconstruction of elasticity distribution can be achieved by solving an inverse problem from observed displacements, based on a deformable tissue model, commonly discretized by the finite element method (FEM). However, available reconstruction techniques are prone to noise and may achieve suboptimal accuracy.


We propose a novel inverse problem formulation and elasticity reconstruction method, in which both the elasticity parameters and the model displacements are estimated as independent parameters of an unconstrained optimization problem. Total variation regularization of spatial elasticity distribution is introduced in this formulation, providing robustness to noise.


Our approach was compared to state of the art direct and iterative harmonic elastography techniques. We employed numerical simulation studies using various noise and inclusion contrasts, given multiple excitation frequencies. Compared to alternatives, our method leads to a decrease in RMSE of up to 50% and an increase in CNR of up to 11 dB in numerical simulations. The methods were also compared on an ex vivo bovine liver sample that was locally subjected to ablation, for which improved lesion delineation was obtained with our proposed method. Our method takes \(\sim 4\,\hbox {s}\) for \(20\times 20\) reconstruction grid.


We present a novel FEM problem formulation that improves reconstruction accuracy and inclusion delineation compared to currently available techniques.


Ultrasound elastography Optimization Lesion monitoring 



This work was funded by Swiss National Science Foundation (SNSF).

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

Research involving human participants

No studies on human participants.


  1. 1.
    Arnal B, Pernot M, Tanter M (2011) Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions. IEEE Trans Ultrason Ferroelectr Freq Control 58(8):1603–1611CrossRefPubMedGoogle Scholar
  2. 2.
    Babuška I, Suri M (1992) Locking effects in the finite element approximation of elasticity problems. Numer Math 62(1):439–463CrossRefGoogle Scholar
  3. 3.
    Baki P, Sanabria SJ, Kosa G, Szekely G, Goksel O (2015) Thermal expansion imaging for monitoring lesion depth using m-mode ultrasound during cardiac rf ablation: in vitro study. Int J Comput Assist Radiol Surg 10(6):681–693CrossRefPubMedGoogle Scholar
  4. 4.
    Castera L, Forns X, Alberti A (2008) Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol 48(5):835–847CrossRefPubMedGoogle Scholar
  5. 5.
    Conn AR, Gould NI, Toint PL (2000) Trust region methods. SIAM, PhiladelphiaCrossRefGoogle Scholar
  6. 6.
    Cooper J, Gimpelson RJ (2004) Summary of safety and effectiveness data from FDA: a valuable source of information on the performance of global endometrial ablation devices. J Reprod Med 49(4):267–273PubMedGoogle Scholar
  7. 7.
    Doyley M, Meaney P, Bamber J (2000) Evaluation of an iterative reconstruction method for quantitative elastography. Phys Med Biol 45(6):1521CrossRefPubMedGoogle Scholar
  8. 8.
    Eskandari H, Salcudean SE, Rohling R (2008) Viscoelastic parameter estimation based on spectral analysis. IEEE Trans Ultrason Rerroelectr Freq Control 55(7):1611–1125CrossRefGoogle Scholar
  9. 9.
    Ferraioli G, Parekh P, Levitov AB, Filice C (2014) Shear wave elastography for evaluation of liver fibrosis. J Ultrasound Med 33(2):197–203CrossRefPubMedGoogle Scholar
  10. 10.
    Gazelle GS, Goldberg SN, Solbiati L, Livraghi T (2000) Tumor ablation with radio-frequency energy. Radiology 217(3):633–646CrossRefPubMedGoogle Scholar
  11. 11.
    Goksel O, Eskandari H, Salcudean SE (2013) Mesh adaptation for improving elasticity reconstruction using the fem inverse problem. IEEE Trans Med Imaging 32(2):408–418CrossRefPubMedGoogle Scholar
  12. 12.
    Goldberg SN, Dupuy DE (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities part I. J Vasc Interv Radiol 12(9):1021–1032CrossRefGoogle Scholar
  13. 13.
    Haissaguerre M, Jais P, Shah DC, Gencel L, Pradeau V, Garrigues S, Chouairi S, Hocini M, Métayer P, Roudaut R, Clementy J (1996) Right and left atrial radiofrequency catheter therapy of paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 7(12):1132–1144CrossRefPubMedGoogle Scholar
  14. 14.
    He DS, Zimmer JE, Hynynen K, Marcus FI, Caruso AC, Lampe LF, Aguirre ML (1994) Preliminary results using ultrasound energy for ablation of the ventricular myocardium in dogs. Am J Cardiol 73(13):1029–1031CrossRefPubMedGoogle Scholar
  15. 15.
    Honarvar M, Lobo J, Mohareri O, Salcudean S, Rohling R (2015) Direct vibro-elastography fem inversion in cartesian and cylindrical coordinate systems without the local homogeneity assumption. Phys Med Biol 60(9):3847CrossRefPubMedGoogle Scholar
  16. 16.
    Honarvar M, Rohling R, Salcudean S (2016) A comparison of direct and iterative finite element inversion techniques in dynamic elastography. Phys Med Biol 61(8):3026CrossRefPubMedGoogle Scholar
  17. 17.
    Honarvar M, Sahebjavaher R, Salcudean S, Rohling R (2012) Sparsity regularization in dynamic elastography. Phys Med Biol 57(19):5909CrossRefPubMedGoogle Scholar
  18. 18.
    Hoskins PR, Martin K, Thrush A (2010) Diagnostic ultrasound: physics and equipment. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. 19.
    Konishi K, Nakamoto M, Kakeji Y, Tanoue K, Kawanaka H, Yamaguchi S, Ieiri S, Sato Y, Maehara Y, Tamura S (2007) A real-time navigation system for laparoscopic surgery based on three-dimensional ultrasound using magneto-optic hybrid tracking configuration. Int J Comput Assist Radiol Surg 2(1):1–10CrossRefGoogle Scholar
  20. 20.
    Lencioni R, Cioni D, Bartolozzi C (2001) Percutaneous radiofrequency thermal ablation of liver malignancies: techniques, indications, imaging findings, and clinical results. Abdom Imaging 26(4):345–360CrossRefPubMedGoogle Scholar
  21. 21.
    Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Program 45(1):503–528CrossRefGoogle Scholar
  22. 22.
    Livraghi T, Solbiati L, Meloni MF, Gazelle GS, Halpern EF, Goldberg SN (2003) Treatment of focal liver tumors with percutaneous radio-frequency ablation: complications encountered in a multicenter study. Radiology 226(2):441–451CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mariani A, Kwiecinski W, Pernot M, Balvay D, Tanter M, Clement O, Cuenod C, Zinzindohoue F (2014) Real time shear waves elastography monitoring of thermal ablation: in vivo evaluation in pig livers. J Surg Res 188(1):37–43CrossRefPubMedGoogle Scholar
  24. 24.
    McRury ID, Haines DE (1996) Ablation for the treatment of arrhythmias. Proc IEEE 84(3):404–416CrossRefGoogle Scholar
  25. 25.
    Orsi F, Arnone P, Chen W, Zhang L (2010) High intensity focused ultrasound ablation: a new therapeutic option for solid tumors. J Cancer Res Ther 6(4):414CrossRefPubMedGoogle Scholar
  26. 26.
    Parikh N, Boyd S (2014) Proximal algorithms. Found Trends Optim 1(3):127–239CrossRefGoogle Scholar
  27. 27.
    Park E, Maniatty AM (2006) Shear modulus reconstruction in dynamic elastography: time harmonic case. Phys Med Biol 51(15):3697CrossRefPubMedGoogle Scholar
  28. 28.
    Pethig R, Kell DB (1987) The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol 32(8):933CrossRefPubMedGoogle Scholar
  29. 29.
    Rivaz H, Fleming I, Assumpcao L, Fichtinger G, Hamper U, Choti M, Hager G, Boctor E (2008) Ablation monitoring with elastography: 2D in-vivo and 3D ex-vivo studies. Med Image Comput Comput Assist Interv MICCAI 2008:458–466Google Scholar
  30. 30.
    Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, Christidis C, Ziol M, Poulet B, Kazemi F (2003) Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 29(12):1705–1713CrossRefPubMedGoogle Scholar
  31. 31.
    Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY (1998) Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 24(9):1419–1435CrossRefPubMedGoogle Scholar
  32. 32.
    Souchon R, Bouchoux G, Maciejko E, Lafon C, Cathignol D, Bertrand M, Chapelon JY (2005) Monitoring the formation of thermal lesions with heat-induced echo-strain imaging: a feasibility study. Ultrasound Med Biol 31(2):251–259CrossRefPubMedGoogle Scholar
  33. 33.
    Tzschätzsch H, Trong MN, Scheuermann T, Ipek-Ugay S, Fischer T, Schultz M, Braun J, Sack I (2016) Two-dimensional time-harmonic elastography of the human liver and spleen. Ultrasound Med Biol 42(11):2562–2571CrossRefPubMedGoogle Scholar
  34. 34.
    Wang Z, Aarya I, Gueorguieva M, Liu D, Luo H, Manfredi L, Wang L, McLean D, Coleman S, Brown S (2012) Image-based 3D modeling and validation of radiofrequency interstitial tumor ablation using a tissue-mimicking breast phantom. Int J Comput Assist Radiol Surg 7(6):941–948CrossRefPubMedGoogle Scholar
  35. 35.
    Webster JG, Hendee WR (1989) Encyclopedia of medical devices and instrumentation, volumes 1 4. Phys Today 42:76CrossRefGoogle Scholar
  36. 36.
    Whayne JG, Nath S, Haines DE (1994) Microwave catheter ablation of myocardium in vitro. Assessment of the characteristics of tissue heating and injury. Circulation 89(5):2390–2395CrossRefPubMedGoogle Scholar
  37. 37.
    Zienkiewicz OC, Taylor RL (2000) The finite element method: solid mechanics, vol 2. Butterworth-Heinemann, LondonGoogle Scholar

Copyright information

© CARS 2018

Authors and Affiliations

  • Corin F. Otesteanu
    • 1
  • Valery Vishnevsky
    • 1
  • Orcun Goksel
    • 1
  1. 1.Computer-Assisted Applications in Medicine GroupSwiss Federal Institute of Technology (ETH Zurich)ZurichSwitzerland

Personalised recommendations