A simulator for advanced analysis of a 5-DOF EM tracking systems in use for image-guided surgery

  • Mengfei LiEmail author
  • Christian Hansen
  • Georg Rose
Original Article



To assess the accuracy of medical electromagnetic tracking systems, reference positioning systems are generally required. Errors are unavoidable in such systems, and despite how tiny they may be, prevent the ground truth from being known. In this work, a simulator was developed and used to analyze the theoretical system performances in electromagnetic tracking.


To simulate the entire tracking process, the magnetic dipole model, Faraday’s law, and a mathematical optimization algorithm are applied. With the simulator, we optimized the spatial placement of the transmitter coils, analyzed the tracking accuracy by applying stochastic and optimized coil placement. Additionally, the performance of the calibration of transmitter coils’ measurement error and Kalman filtering was tested.


The results show that, after optimizing the spatial arrangement of the transmitter coils, the tracking accuracy is significantly improved to a much higher level compared with applying statistical arrangement. The measurement errors of the transmitter coils’ positions and orientations can be totally rectified by the developed calibration algorithm when no noises are introduced. The Kalman filter reduces the sensor jitter errors caused by noise, which potentially allows the EM tracking system to reach a larger volume of interest.


We proposed a simulator for advanced analysis in electromagnetic tracking without hardware requirements. Grounded on this, we performed an optimization of the spatial arrangement of the transmitter coils to improve the tracking accuracy further. The performances of the calibration algorithm and Kalman filtering were also evaluated. The developed simulator can also be applied for other analysis in electromagnetic tracking.


Electromagnetic tracking Navigation Transmitter placement optimization Kalman filter Image-guided surgery 



The work of this paper is partly funded by the Federal Ministry of Education and Research within the Forschungscampus STIMULATE under Grant number ‘13GW0095A’.

Compliance with ethical standards

Conflict of interest

The authors Mengfei Li, Christian Hansen and Georg Rose declare that they have no conflict of interest.

Ethical approval

Not required.


  1. 1.
    Loke WF, Choi TY, Maleki T, Papiez L, Ziaie B, Jung B (2010) Magnetic tracking system for radiation therapy. IEEE Trans Biomed Circuits Syst 4(4):223–231. doi: 10.1109/TBCAS.2010.2046737 CrossRefGoogle Scholar
  2. 2.
    Franz AM, März K, Hummel J, Birkfellner W, Bendl R, Delorme S, Schlemmer HP, Meinzer HP, Maier-Hein L (2012) Electromagnetic tracking for us-guided interventions: standardized assessment of a new compact field generator. Int J Comput Assist Radiol Surg 7(6):813–818. doi: 10.1007/s11548-012-0740-3 CrossRefPubMedGoogle Scholar
  3. 3.
    Shahriari N, Hekman E, Oudkerk M, Misra S (2015) Design and evaluation of a computed tomography (ct)-compatible needle insertion device using an electromagnetic tracking system and ct images. Int J Comput Assist Radiol Surg 10(11):1845–1852. doi: 10.1007/s11548-015-1176-3 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L (2014) Electromagnetic tracking in medicine—a review of technology, validation, and applications. IEEE Trans Med Imaging 33(8):1702–1725. doi: 10.1109/TMI.2014.2321777 CrossRefPubMedGoogle Scholar
  5. 5.
    Wood BJ, Zhang H, Durrani A, Glossop N, Ranjan S, Lindisch D, Levy E, Banovac F, Borgert J, Krueger S, Kruecker J, Viswanathan A, Cleary K (2005) Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study. J Vasc Interv Radiol 16(4):493–505. doi: 10.1097/01.RVI.0000148827.62296.B4 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Krücker J, Xu S, Glossop N, Viswanathan A, Borgert J, Schulz H, Wood BJ (2007) Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol 18(9):1141–1150. doi: 10.1016/j.jvir.2007.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yaniv Z, Wilson E, Lindisch D, Cleary K (2009) Electromagnetic tracking in the clinical environment. Med Phys 36(3):876–892. doi: 10.1118/1.3075829 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hummel J, Figl M, Birkfellner W, Bax MR, Shahidi R, Maurer C Jr, Bergmann H (2006) Evaluation of a new electromagnetic tracking system using a standardized assessment protocol. Phys Med Biol 51(10):N205. doi: 10.1088/0031-9155/51/10/N01 CrossRefPubMedGoogle Scholar
  9. 9.
    Bien T, Li M, Salah Z, Rose G (2014) Electromagnetic tracking system with reduced distortion using quadratic excitation. Int J Comput Assist Radiol Surg 9(2):323–332. doi: 10.1007/s11548-013-0925-4 CrossRefPubMedGoogle Scholar
  10. 10.
    Bien T, Rose G (2012) Algorithm for calibration of the electromagnetic tracking system. In: 2012 IEEE-EMBS international conference on biomedical and health informatics (BHI), IEEE, pp 85–88. doi: 10.1109/BHI.2012.6211512
  11. 11.
    Fitzpatrick JM, West JB, Maurer CR (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5):694–702. doi: 10.1109/42.736021 CrossRefPubMedGoogle Scholar
  12. 12.
    Frantz DD, Wiles A, Leis S, Kirsch S (2003) Accuracy assessment protocols for electromagnetic tracking systems. Phys Med Biol 48(14):2241CrossRefPubMedGoogle Scholar
  13. 13.
    Nafis C, Jensen V, Beauregard L, Anderson P (2006) Method for estimating dynamic em tracking accuracy of surgical navigation tools. Proc SPIE Med Image 2006 Vis Image Guided Proc Display 6141:152–167. doi: 10.1117/12.653448 Google Scholar
  14. 14.
    Wilson E, Yaniv Z, Zhang H, Nafis C, Shen E, Shechter G, Wiles A, Peters T, Lindisch D, Cleary K (2007) A hardware and software protocol for the evaluation of electromagnetic tracker accuracy in the clinical environment: a multi-center study. Proc SPIE 6509:65092T. doi: 10.1117/12.712701 CrossRefGoogle Scholar
  15. 15.
    Koivukangas T, Katisko JP, Koivukangas JP (2013) Technical accuracy of optical and the electromagnetic tracking systems. SpringerPlus 2(1):90. doi: 10.1186/2193-1801-2-90 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    O’Donoghue K, Cantillon-Murphy P (2015) Planar magnetic shielding for use with electromagnetic tracking systems. IEEE Trans Magn 51(2):1–12. doi: 10.1109/TMAG.2014.2352344 CrossRefGoogle Scholar
  17. 17.
    Li M, Hansen C, Rose G (2015) A robust electromagnetic tracking system for clinical applications. In: Proceedings of the annual meeting of the German society of computer- and robot-assisted surgery, pp 31–36Google Scholar
  18. 18.
    Wiles AD, Thompson DG, Frantz DD (2004) Accuracy assessment and interpretation for optical tracking systems. Proc SPIE 5367:421–432. doi: 10.1117/12.536128
  19. 19.
    Maier-Hein L, Franz A, Birkfellner W, Hummel J, Gergel I, Wegner I, Meinzer HP (2012) Standardized assessment of new electromagnetic field generators in an interventional radiology setting. Med Phys 39(6):3424–3434CrossRefPubMedGoogle Scholar
  20. 20.
    Plotkin A, Shafrir O, Paperno E, Kaplan DM (2010) Magnetic eye tracking: a new approach employing a planar transmitter. IEEE Trans Biomed Eng 57(5):1209–1215. doi: 10.1109/TBME.2009.2038495 CrossRefPubMedGoogle Scholar
  21. 21.
    O’Donoghue K, Eustace D, Griffiths J, O’Shea M, Power T, Mansfield H, Cantillon-Murphy P (2014) Catheter position tracking system using planar magnetics and closed loop current control. IEEE Trans Magn 50(7):1–9. doi: 10.1109/TMAG.2014.2304271 CrossRefGoogle Scholar
  22. 22.
    Raab FH, Blood EB, Steiner TO, Jones HR (1979) Magnetic position and orientation tracking system. IEEE Trans Aerosp Electron Syst AES 15(5):709–718. doi: 10.1109/TAES.1979.308860 CrossRefGoogle Scholar
  23. 23.
    Schneider M, Stevens C (2007) Development and testing of a new magnetic-tracking device for image guidance. In: Medical imaging, International society for optics and photonics, pp 65.090I–65.090I. doi: 10.1117/12.713249
  24. 24.
    Sherman JT, Lubkert JK, Popovic RS, DiSilvestro MR (2007) Characterization of a novel magnetic tracking system. IEEE Trans Magn 43(6):2725–2727. doi: 10.1109/TMAG.2007.893314 CrossRefGoogle Scholar
  25. 25.
    Stenger B, Mendonça PR, Cipolla R (2001) Model-based hand tracking using an unscented Kalman filter. BMVC 1:63–72. doi: 10.5244/C.15.8 Google Scholar
  26. 26.
    Bertozzi M, Broggi A, Fascioli A, Tibaldi A, Chapuis R, Chausse F (2004) Pedestrian localization and tracking system with Kalman filtering. In: Intelligent vehicles symposium, IEEE, pp 584–589. doi: 10.1109/IVS.2004.1336449
  27. 27.
    Schenderlein M, Rasche V, Dietmayer K (2011) Three-dimensional catheter tip tracking from asynchronous biplane X-ray image sequences using non-linear state filtering. In: Bildverarbeitung für die Medizin 2011, Springer, pp 234–238. doi: 10.1007/978-3-642-19335-4_49
  28. 28.
    Li M, Song S, Hu C, Chen D, Meng MQH (2010) A novel method of 6-dof electromagnetic navigation system for surgical robot. In: 2010 8th world congress on intelligent control and automation (WCICA), IEEE, pp 2163–2167. doi: 10.1109/WCICA.2010.5554348
  29. 29.
    Harris PG, Pendlebury J (2006) Dipole-field contributions to geometric-phase-induced false electric-dipole-moment signals for particles in traps. Phys Rev A 73(1):014101. doi: 10.1103/PhysRevA.73.01410 CrossRefGoogle Scholar
  30. 30.
    Li M, Hansen C, Rose G (2017) A software solution to dynamically reduce metallic distortions of electromagnetic tracking systems for image-guided surgery. Int J Comput Assist Radiol Surg 2:1–13. doi: 10.1007/s11548-017-1546-0 Google Scholar
  31. 31.
    Aron M, Kerrien E, Berger MO, Laprie Y (2006) Coupling electromagnetic sensors and ultrasound images for tongue tracking: acquisition setup and preliminary results. In: 7th international seminar on speech production-ISSP’06, CEFALA-Centro de Estudos da Fala, Acústica, Linguagem e músicAGoogle Scholar

Copyright information

© CARS 2017

Authors and Affiliations

  1. 1.Chair for Medical Telematics and Medical Technology, Institute of Medical TechnologyOtto-von Guericke Universität MagdeburgMagdeburgGermany
  2. 2.Research Group of Computer-Assisted Surgery, Institute of Simulation and GraphicsOtto-von-Guericke Universität MagdeburgMagdeburgGermany

Personalised recommendations