Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning

  • Peng Yuan
  • Huaming Mai
  • Jianfu Li
  • Dennis Chun-Yu Ho
  • Yingying Lai
  • Siting Liu
  • Daeseung Kim
  • Zixiang Xiong
  • David M. Alfi
  • John F. Teichgraeber
  • Jaime Gateno
  • James J. XiaEmail author
Review Article



There are many proven problems associated with traditional surgical planning methods for orthognathic surgery. To address these problems, we developed a computer-aided surgical simulation (CASS) system, the AnatomicAligner, to plan orthognathic surgery following our streamlined clinical protocol.


The system includes six modules: image segmentation and three-dimensional (3D) reconstruction, registration and reorientation of models to neutral head posture, 3D cephalometric analysis, virtual osteotomy, surgical simulation, and surgical splint generation. The accuracy of the system was validated in a stepwise fashion: first to evaluate the accuracy of AnatomicAligner using 30 sets of patient data, then to evaluate the fitting of splints generated by AnatomicAligner using 10 sets of patient data. The industrial gold standard system, Mimics, was used as the reference.


When comparing the results of segmentation, virtual osteotomy and transformation achieved with AnatomicAligner to the ones achieved with Mimics, the absolute deviation between the two systems was clinically insignificant. The average surface deviation between the two models after 3D model reconstruction in AnatomicAligner and Mimics was 0.3 mm with a standard deviation (SD) of 0.03 mm. All the average surface deviations between the two models after virtual osteotomy and transformations were smaller than 0.01 mm with a SD of 0.01 mm. In addition, the fitting of splints generated by AnatomicAligner was at least as good as the ones generated by Mimics.


We successfully developed a CASS system, the AnatomicAligner, for planning orthognathic surgery following the streamlined planning protocol. The system has been proven accurate. AnatomicAligner will soon be available freely to the boarder clinical and research communities.


Computer-aided surgical simulation Virtual surgical planning Orthognathic surgery Computed tomography Composite skull model Neutral head posture 3D cephalometric analysis Virtual osteotomy Streamlined surgical splint design 



The author would like to thank Chien-Ming Chang, D.D.S., Yi-Fang Lo, D.D.S., Shunyao Shen D.D.S., M.S., Xiaoyan Zhang, Ph.D., Ken-Chung Chen, D.D.S., M.S., Zhen Tang, D.D.S., M.S., Ph.D., and Xiaobo Zhou, Ph.D., for their contributions on this project. The preliminary study of this manuscript was presented in part at \(7^{\mathrm{th}}\) International Conference on Medical Imaging and Augmented Reality (MIAR) in Bern, Switzerland on August 24–26, 2016.

Funding This study is funded in part by the United States National Institutes of Health/National Institute of Dental and Craniofacial Research (NIH/NIDCR) Grants (R01DE022676 and R01DE021863). Dr. Mai was sponsored by Scholar Award of Guangxi Education Department, Guangxi, China, and Dr. Ho was sponsored by Taipei Municipal Wan Fang Hospital Taipei, Taiwan (ROC), while working at the Surgical Planning Laboratory, Department of Oral and Maxillofacial Surgery, Houston Methodist Research Institute, Houston, TX, USA.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by our IRB [approval number: IRB(2)1011-0187x]. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Due to the fact that this study only utilized historical data that had been collected as a part of the medical records during the patient care, informed consent is not required.


  1. 1.
    Bell WH (1980) Surgical correction of dentofacial deformities. WB Saunders, PhiladelphiaGoogle Scholar
  2. 2.
    Bell WH (1992) Modern practice in orthognathic and reconstructive surgery. WB Saunders, PhiladelphiaGoogle Scholar
  3. 3.
    Xia JJ, Gateno J, Teichgraeber JF (2009) New clinical protocol to evaluate craniomaxillofacial deformity and plan surgical correction. J Oral Maxillofac Surg 67(10):2093–2106CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Altobelli DE, Kikinis R, Mulliken JB, Cline H, Lorensen W, Jolesz F (1993) Computer-assisted three-dimensional planning in craniofacial surgery. Plast Reconstr Surg 92(4):576–585 (discussion 586–577) CrossRefPubMedGoogle Scholar
  5. 5.
    Montgomery K, Stephanides M, Schendel S (2000) Development and application of a virtual environment for reconstructive surgery. Comput Aided Surg 5(2):90–97. doi: 10.1002/1097-0150(2000) 5:2<90::AID-IGS3<3.0.CO;2-7 CrossRefPubMedGoogle Scholar
  6. 6.
    Xia J, Wang D, Samman N, Yeung RW, Tideman H (2000) Computer-assisted three-dimensional surgical planning and simulation: 3D color facial model generation. Int J Oral Maxillofac Surg 29(1):2–10CrossRefPubMedGoogle Scholar
  7. 7.
    Xia J, Ip HH, Samman N, Wang D, Kot CS, Yeung RW, Tideman H (2000) Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy. Int J Oral Maxillofac Surg 29(1):11–17CrossRefPubMedGoogle Scholar
  8. 8.
    Xia J, Ip HH, Samman N, Wong HT, Gateno J, Wang D, Yeung RW, Kot CS, Tideman H (2001) Three-dimensional virtual-reality surgical planning and soft-tissue prediction for orthognathic surgery. IEEE Trans Inf Technol Biomed 5(2):97–107CrossRefPubMedGoogle Scholar
  9. 9.
    Xia J, Samman N, Yeung RW, Wang D, Shen SG, Ip HH, Tideman H (2000) Computer-assisted three-dimensional surgical planing and simulation. 3D soft tissue planning and prediction. Int J Oral Maxillofac Surg 29(4):250–258CrossRefPubMedGoogle Scholar
  10. 10.
    Xia JJ, Gateno J, Teichgraeber JF (2005) Three-dimensional computer-aided surgical simulation for maxillofacial surgery. Atlas Oral Maxillofac Surg Clin North Am 13(1):25–39CrossRefPubMedGoogle Scholar
  11. 11.
    Swennen GR, Schutyser F (2006) Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofacial Orthop 130(3):410–416CrossRefPubMedGoogle Scholar
  12. 12.
    Swennen GR, Barth EL, Eulzer C, Schutyser F (2007) The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull. Int J Oral Maxillofac Surg 36(2):146–152CrossRefPubMedGoogle Scholar
  13. 13.
    Gateno J, Xia JJ, Teichgraeber JF, Christensen AM, Lemoine JJ, Liebschner MA, Gliddon MJ, Briggs ME (2007) Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities. J Oral Maxillofac Surg 65(4):728–734CrossRefPubMedGoogle Scholar
  14. 14.
    Sadiq Z, Collyer J, Sneddon K, Walsh S (2012) Orthognathic treatment of asymmetry: two cases of “waferless” stereotactic maxillary positioning. Br J Oral Maxillofac Surg 50(2):e27–29. doi: 10.1016/j.bjoms.2011.07.016 CrossRefPubMedGoogle Scholar
  15. 15.
    Polley JW, Figueroa AA (2013) Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery. J Oral Maxillofac Surg 71(5):911–920. doi: 10.1016/j.joms.2012.11.004 CrossRefPubMedGoogle Scholar
  16. 16.
    Bobek S, Farrell B, Choi C, Farrell B, Weimer K, Tucker M (2015) Virtual surgical planning for orthognathic surgery using digital data transfer and an intraoral fiducial marker: the charlotte method. J Oral Maxillofac Surg 73(6):1143–1158. doi: 10.1016/j.joms.2014.12.008 CrossRefPubMedGoogle Scholar
  17. 17.
    Ullah R, Turner PJ, Khambay BS (2015) Accuracy of three-dimensional soft tissue predictions in orthognathic surgery after Le Fort I advancement osteotomies. Br J Oral Maxillofac Surg 53(2):153–157. doi: 10.1016/j.bjoms.2014.11.001 CrossRefPubMedGoogle Scholar
  18. 18.
    Li B, Shen SG, Yu H, Li J, Xia JJ, Wang X (2016) A new design of CAD/CAM surgical template system for two-piece narrowing genioplasty. Int J Oral Maxillofac Surg 45(5):560–566. doi: 10.1016/j.ijom.2015.10.013 CrossRefPubMedGoogle Scholar
  19. 19.
    Chen X, Xu L, Sun Y, Politis C (2016) A review of computer-aided oral and maxillofacial surgery: planning, simulation and navigation. Expert Rev Med Devices 13(11):1043–1051. doi: 10.1080/17434440.2016.1243054 CrossRefPubMedGoogle Scholar
  20. 20.
    Xia JJ, Gateno J, Teichgraeber JF, Yuan P, Chen KC, Li J, Zhang X, Tang Z, Alfi DM (2015) Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 1: planning sequence. Int J Oral Maxillofac Surg 44(12):1431–1440. doi: 10.1016/j.ijom.2015.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gateno J, Xia J, Teichgraeber JF, Rosen A (2003) A new technique for the creation of a computerized composite skull model. J Oral Maxillofac Surg 61(2):222–227CrossRefPubMedGoogle Scholar
  22. 22.
    Schatz EC, Xia JJ, Gateno J, English JD, Teichgraeber JF, Garrett FA (2010) Development of a technique for recording and transferring natural head position in 3 dimensions. J Craniofac Surg 21(5):1452–1455. doi: 10.1097/SCS.0b013e3181ebcd0a CrossRefPubMedGoogle Scholar
  23. 23.
    Xia JJ, McGrory JK, Gateno J, Teichgraeber JF, Dawson BC, Kennedy KA, Lasky RE, English JD, Kau CH, McGrory KR (2011) A new method to orient 3-dimensional computed tomography models to the natural head position: a clinical feasibility study. J Oral Maxillofac Surg 69(3):584–591. doi: 10.1016/j.joms.2010.10.034 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gateno J, Xia JJ, Teichgraeber JF (2011) New 3-dimensional cephalometric analysis for orthognathic surgery. J Oral Maxillofac Surg 69(3):606–622. doi: 10.1016/j.joms.2010.09.010 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Xia JJ, Gateno J, Teichgraeber JF, Yuan P, Li J, Chen KC, Jajoo A, Nicol M, Alfi DM (2015) Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 2: three-dimensional cephalometry. Int J Oral Maxillofac Surg 44(12):1441–1450. doi: 10.1016/j.ijom.2015.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gateno J, Jajoo A, Nicol M, Xia JJ (2016) The primal sagittal plane of the head: a new concept. Int J Oral Maxillofac Surg 45(3):399–405. doi: 10.1016/j.ijom.2015.11.013 CrossRefPubMedGoogle Scholar
  27. 27.
    Gateno J, Xia J, Teichgraeber JF, Rosen A, Hultgren B, Vadnais T (2003) The precision of computer-generated surgical splints. J Oral Maxillofac Surg 61(7):814–817CrossRefPubMedGoogle Scholar
  28. 28.
    Hsu SS, Gateno J, Bell RB, Hirsch DL, Markiewicz MR, Teichgraeber JF, Zhou X, Xia JJ (2013) Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: a prospective multicenter study. J Oral Maxillofac Surg 71(1):128–142. doi: 10.1016/j.joms.2012.03.027 CrossRefPubMedGoogle Scholar
  29. 29.
    Schwartz HC (2014) Does computer-aided surgical simulation improve efficiency in bimaxillary orthognathic surgery? Int J Oral Maxillofac Surg 43(5):572–576. doi: 10.1016/j.ijom.2013.10.018 CrossRefPubMedGoogle Scholar
  30. 30.
    Yuan P, Ho DC-Y, Chang C-M, Li J, Mai H, Kim D, Shen S, Zhang X, Zhou X, Xiong Z, Gateno J, Xia JJ (2016) A novel computer-aided surgical simulation (CASS) system for streamline orthognathic surgical planning. In: Paper presented at the 7th international conference of medical imaging and augmented reality (MIAR) (2016) Bern, Switzerland. August 24–26, 2016Google Scholar
  31. 31.
    Schatz EC (2006) A new technique for recording natural head position in three dimensions (MS thesis). The University of Texas Health Science Center at Houston, Houston. Xia JJ, English JD, Garrett FA, et al, AdvisorsGoogle Scholar
  32. 32.
    Lorensen WE, Cline HE Marching cubes: A high resolution 3D surface construction algorithm. In: SIGGRAPH ’87 proceedings of the 14th annual conference on computer graphics and interactive techniques, New York, NY, 1987. ACM SIGGRAPH Computer GraphicsGoogle Scholar
  33. 33.
    Xia J, Samman N, Yeung RW, Shen SG, Wang D, Ip HH, Tideman H (2000) Three-dimensional virtual reality surgical planning and simulation workbench for orthognathic surgery. Int J Adult Orthod Orthognath Surg 15(4):265–282Google Scholar
  34. 34.
    Damstra J, Fourie Z, Ren Y (2010) Simple technique to achieve a natural position of the head for cone beam computed tomography. Br J Oral Maxillofac Surg 48(3):236–238. doi: 10.1016/j.bjoms.2009.10.001 CrossRefPubMedGoogle Scholar
  35. 35.
    Athanasiou AE (1995) Orthodontic cephalometry. Mosby-Wolfe, St. LouisGoogle Scholar
  36. 36.
    Gateno J, Xia JJ, Teichgraeber JF (2011) Effect of facial asymmetry on 2-dimensional and 3-dimensional cephalometric measurements. J Oral Maxillofac Surg 69(3):655–662. doi: 10.1016/j.joms.2010.10.046 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Swennen GR, Schutyser F, Barth EL, De Groeve P, De Mey A (2006) A new method of 3-D cephalometry Part I: the anatomic Cartesian 3-D reference system. J Craniofac Surg 17(2):314–325CrossRefPubMedGoogle Scholar
  38. 38.
    Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Elsevier, LondonGoogle Scholar
  39. 39.
    Li J, Yuan P, Chang C-M, Ho DC-Y, Lo Y-F, Shen S, Kim D, Teichgraeber JF, Alfi DM, Gateno J, Xia JJ (2017) New approach to establish an object reference frame for dental arch in computer-aided surgical simulation (CASS). Int J Oral Maxillofac Surg (in press) Google Scholar
  40. 40.
    Gottschalk S, Lin MC, Manocha D (1996) OBBTree: a hierarchical structure for rapid interference detection. Paper presented at the proceedings of ACM Siggraph ’96Google Scholar
  41. 41.
    Chang YB, Xia JJ, Gateno J, Xiong Z, Zhou X, Wong ST (2010) An automatic and robust algorithm of reestablishment of digital dental occlusion. IEEE Trans Med Imaging 29(9):1652–1663. doi: 10.1109/TMI.2010.2049526 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chang YB, Xia JJ, Gateno J, Xiong Z, Teichgraeber JF, Lasky RE, Zhou X (2012) In vitro evaluation of new approach to digital dental model articulation. J Oral Maxillofac Surg 70(4):952–962. doi: 10.1016/j.joms.2011.02.109 CrossRefPubMedGoogle Scholar
  43. 43.
    Xia JJ, Chang YB, Gateno J, Xiong Z, Zho X (2010) Automated digital dental articulation. Med Image Comput Comput Assist Interv 13(Pt 3):278–286PubMedPubMedCentralGoogle Scholar
  44. 44.
    Li J, Ferraz F, Shen S, Lo Y-F, Zhang X, Yuan P, Tang Z, Chen K-C, Gateno J, Zhou X, Xia JJ (2015) Automated three-piece digital dental articulation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical image computing and computer-assisted intervention—MICCAI 2015, lecture notes in computer science, Munich, Germany, October 5–9, 2015. Springer, pp 488-496Google Scholar
  45. 45.
    Nadjmi N, Mollemans W, Daelemans A, Van Hemelen G, Schutyser F, Berge S (2010) Virtual occlusion in planning orthognathic surgical procedures. Int J Oral Maxillofac Surg 39(5):457–462. doi: 10.1016/j.ijom.2010.02.002 CrossRefPubMedGoogle Scholar
  46. 46.
    Meller S, Nkenke E, Kalender WA (2005) Statistical face models ofr the prediction of soft-tissue deformations after orthognathic osteotomies. MICCAI LNCS 3750:443–450Google Scholar
  47. 47.
    Keeve E, Girod S, Kikinis R, Girod B (1998) Deformable modeling of facial tissue for craniofacial surgery simulation. Comput Aided Surg 3(5):228–238CrossRefPubMedGoogle Scholar
  48. 48.
    Nedel LP, Thalmann D (1998) Real time muscle deformations using mass-spring systems. In: Proceedings of the Computer Graphics International, Hannover, Germany, pp 156–166Google Scholar
  49. 49.
    Chen F, Gu L, Huang P, Zhang J, Xu J (2007) Soft tissue modeling using nonlinear mass spring and simplified medial representation. Conf Proc IEEE Eng Med Biol Soc 2007:5083–5086PubMedGoogle Scholar
  50. 50.
    Maal TJ, Plooij JM, Rangel FA, Mollemans W, Schutyser FA, Berge SJ (2008) The accuracy of matching three-dimensional photographs with skin surfaces derived from cone-beam computed tomography. Int J Oral Maxillofac Surg 37(7):641–646CrossRefPubMedGoogle Scholar
  51. 51.
    Marchetti C, Bianchi A, Bassi M, Gori R, Lamberti C, Sarti A (2006) Mathematical modeling and numerical simulation in maxillo-facial virtual surgery (VISU). J Craniofac Surg 17(4):661–667 (discussion 668) CrossRefPubMedGoogle Scholar
  52. 52.
    Marchetti C, Bianchi A, Bassi M, Gori R, Lamberti C, Sarti A (2007) Mathematical modeling and numerical simulation in maxillofacial virtual surgery. J Craniofac Surg 18(4):826–832CrossRefPubMedGoogle Scholar
  53. 53.
    Cover SA, Ezquerra NF, O’Brien JF (1993) Interactively deformable models for surgery simulation. IEEE Comput Graph Appl 13:68–75CrossRefGoogle Scholar
  54. 54.
    Gori R, Sarti A, Lamberti C, Fares JE, Marchetti C (2001) Maxillo-facial virtual surgery from 3D CT images. Paper presented at the bioengineering science and supercomputing at CINECA reportGoogle Scholar
  55. 55.
    Binucci MM, Lamberti C, Gori R, Montagna L, Sarti A (2002) An integrated system for maxillo-facial surgery simulation. Paper presented at the CARSGoogle Scholar
  56. 56.
    Koch RM, Gross MH, Carls FR, von Buren DF, Frankhauser G, Parish YIH (1996) Simulating facial surgery using finite element models. In: SIGGRAPH. ACM Press, pp 421–428Google Scholar
  57. 57.
    Pan BB, Zhang GM, Xia JJ, Yuan P, Ip HHS, He QZ, Lee PKM, Chow B, Zhou XB (2016) Prediction of soft tissue deformations after CMF surgery with incremental kernel ridge regression. Comput Biol Med 75:1–9. doi: 10.1016/j.compbiomed.2016.04.020 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Pan B, Xia JJ, Yuan P, Gateno J, Ip HH, He Q, Lee PK, Chow B, Zhou X (2012) Incremental kernel ridge regression for the prediction of soft tissue deformations. Med Image Comput Comput Assist Interv 15(Pt 1):99–106PubMedPubMedCentralGoogle Scholar
  59. 59.
    Kim H, Jurgens P, Nolte LP, Reyes M (2010) Anatomically-driven soft-tissue simulation strategy for cranio-maxillofacial surgery using facial muscle template model. Med Image Comput Comput Assist Interv 13(Pt 1):61–68PubMedGoogle Scholar
  60. 60.
    Mollemans W, Schutyser F, Nadjmi N, Maes F, Suetens P (2007) Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Med Image Anal 11(3):282–301CrossRefPubMedGoogle Scholar
  61. 61.
    Kim D, Chang CM, Ho DC-Y, Zhang X, Shen S, Yuan P, Mai H, Zhang G, Zhou X, Gateno J, Liebschner MAK, Xia JJ (2016) Two-stage simulation method to improve facial soft tissue prediction accuracy for orthognathic surgery. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells WM (eds) Medical image computing and computer-assisted intervention—MICCAI 2016, lecture notes in computer science, Athens, Greece, October 17–21, 2016. Springer, pp 559–567Google Scholar
  62. 62.
    Zhang X, Tang Z, Liebschner MA, Kim D, Shen S, Chang CM, Yuan P, Zhang G, Gateno J, Zhou X, Zhang SX, Xia JJ (2015) An eFace-template method for efficiently generating patient-specific anatomically-detailed facial soft tissue FE models for craniomaxillofacial surgery simulation. Ann Biomed Eng. doi: 10.1007/s10439-015-1480-7 Google Scholar
  63. 63.
    Zhang G, Xia JJ, Liebschner M, Zhang X, Kim D, Zhou X (2016) Improved Rubin-Bodner model for the prediction of soft tissue deformations. Med Eng Phys 38(11):1369–1375. doi: 10.1016/j.medengphy.2016.09.008 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© CARS 2017

Authors and Affiliations

  • Peng Yuan
    • 1
  • Huaming Mai
    • 1
  • Jianfu Li
    • 1
  • Dennis Chun-Yu Ho
    • 1
  • Yingying Lai
    • 1
  • Siting Liu
    • 1
  • Daeseung Kim
    • 1
  • Zixiang Xiong
    • 2
  • David M. Alfi
    • 1
    • 3
  • John F. Teichgraeber
    • 4
  • Jaime Gateno
    • 1
    • 3
    • 4
    • 5
  • James J. Xia
    • 1
    • 3
    • 4
    • 5
    Email author
  1. 1.Department of Oral and Maxillofacial SurgeryHouston Methodist Research InstituteHoustonUSA
  2. 2.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Department of Surgery (Oral and Maxillofacial Surgery), Weill Medical CollegeCornell UniversityNew YorkUSA
  4. 4.Division of Pediatric Plastic Surgery, Department of Pediatric SurgeryThe University of Texas Houston Health Science CenterHoustonUSA
  5. 5.Department of OrthodonticsThe University of Texas Houston Health Science CenterHoustonUSA

Personalised recommendations