Interactive segmentation in MRI for orthopedic surgery planning: bone tissue

  • Firat Ozdemir
  • Neerav Karani
  • Philipp Fürnstahl
  • Orcun Goksel
Original Article
  • 176 Downloads

Abstract

Purpose

Planning orthopedic surgeries is commonly performed in computed tomography (CT) images due to the higher contrast of bony structure. However, soft tissues such as muscles and ligaments that may determine the functional outcome of a procedure are not easy to identify in CT, for which fast and accurate segmentation in MRI would be desirable. To be usable in daily practice, such method should provide convenient means of interaction for modifications and corrections, e.g., during perusal by the surgeon or the planning physician for quality control.

Methods

We propose an interactive segmentation framework for MR images and evaluate the outcome for segmentation of bones. We use a random forest classification and a random walker-based spatial regularization. The latter enables the incorporation of user input as well as enforcing a single connected anatomical structures, thanks to which a selective sampling strategy is proposed to substantially improve the supervised learning performance.

Results

We evaluated our segmentation framework on 10 patient humerus MRI as well as 4 high-resolution MRI from volunteers. Interactive humerus segmentations for patients took on average 150 s with over 3.5 times time-gain compared to manual segmentations, with accuracies comparable (converging) to that of much longer interactions. For high-resolution data, a novel multi-resolution random walker strategy further reduced the run time over 20 times of the manual segmentation, allowing for a feasible interactive segmentation framework.

Conclusions

We present a segmentation framework that allows iterative corrections leading to substantial speed gains in bone annotation in MRI. This will allow us to pursue semi-automatic segmentations of other musculoskeletal anatomy first in a user-in-the-loop manner, where later less user interactions or perhaps only few for quality control will be necessary as our annotation suggestions improve.

Keywords

Bone segmentation Iterative refinement MR in CAOS 

References

  1. 1.
    Fürnstahl P, Schweizer A, Graf M, Vlachopoulos L, Fucentese S, Wirth S, Nagy L, Szekely G, Goksel O (2016) Surgical treatment of long-bone deformities: 3D preoperative planning and patient-specific instrumentation. In: Zheng G, Li S (eds) Computational radiology for orthopaedic interventions. Springer, pp 123–149Google Scholar
  2. 2.
    Despotović I, Goossens B, Philips W (2015) MRI segmentation of the human brain: challenges, methods, and applications. CMMM 2015:23–45. doi:10.1155/2015/450341
  3. 3.
    An HJ, Seo S, Kang H, Choi H, Cheon GJ, Kim H-J, Lee DS, Song IC, Kim YK, Lee JS (2016) Mri-based attenuation correction for pet/mri using multiphase level-set method. J Nucl Med 57(4):587–593CrossRefPubMedGoogle Scholar
  4. 4.
    Preusser T, Bezzi M, Jenne J, Langø T, Levy Y, Mueller M, Sat G, Tanner C, Zangos S, Guenther M, Melzer A (2015) Trans-fusimo: clinical translation of patient specific planning and conduction of FUS treatment in moving organs. J Ther Ultrasound 3(1):O85CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Dodin P, Martel-Pelletier J, Pelletier J-P, Abram F (2011) A fully automated human knee 3D MRI bone segmentation using the ray casting technique. Med Biol Eng Comput 49(12):1413–1424CrossRefPubMedGoogle Scholar
  6. 6.
    Koch M, Schwing AG, Comaniciu D, Pollefeys M (2011) Fully automatic segmentation of wrist bones for arthritis patients. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 636–640Google Scholar
  7. 7.
    Gass T, Szekely G, Goksel O (2014) Simultaneous segmentation and multi-resolution nonrigid atlas registration. IEEE Trans Image Process 23:2931–2943CrossRefPubMedGoogle Scholar
  8. 8.
    Criminisi A, Sharp T, Blake A, (2008) Geos: geodesic image segmentation. In: European conference on computer vision (ECCV) (Marseille, France), pp 99–112Google Scholar
  9. 9.
    Zhu L, Kolesov I, Gao Y, Kikinis R, Tannenbaum A (2014) An effective interactive medical image segmentation method using fast growcut. In: MICCAI W IMICGoogle Scholar
  10. 10.
    Yushkevich PA, Piven J, Hazlett HC, Gimpel Smith R, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefPubMedGoogle Scholar
  11. 11.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefGoogle Scholar
  12. 12.
    Verikas A, Gelzinis A, Bacauskiene M (2011) Mining data with random forests: a survey and results of new tests. Pattern Recogn 44:330–349CrossRefGoogle Scholar
  13. 13.
    Kirsanova EN, Sadovsky MG (2002) Entropy approach in the analysis of anisotropy of digital images. Open Syst Inf Dyn 9:239–250CrossRefGoogle Scholar
  14. 14.
    Thoma J, Ozdemir F, Goksel O (2016) Automatic segmentation of abdominal MRI using selective sampling and random walker. In: MICCAI W MCV, pp 1–11Google Scholar
  15. 15.
    Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE TMI 27(11):1668–1681Google Scholar
  16. 16.
    Petrou M, Kovalev VA, Reichenbach JR (2006) Three-dimensional nonlinear invisible boundary detection. IEEE Trans Image process 15:3020–3032CrossRefPubMedGoogle Scholar
  17. 17.
    Mahapatra D, Schuffler PJ, Tielbeek JAW, Makanyanga JC, Stoker J, Taylor SA, Vos FM, Buhmann JM (2013) Automatic detection and segmentation of crohn’s disease tissues from abdominal MRI. IEEE TMI 32:2332–2347Google Scholar
  18. 18.
    Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783CrossRefPubMedGoogle Scholar
  19. 19.
    Dakua SP, Sahambi JS (2009) LV contour extraction from cardiac MR images using random walks approach. In: Advance computing conference (IACC), p 228Google Scholar
  20. 20.
    Maier F, Wimmer A, Soza G, Kaftan JN, Fritz D, Dillmann R (2008) Automatic liver segmentation using the random walker algorithm. In: Tolxdorff T, Braun J, Deserno TM, Horsch A, Handels H, Meinzer HP (eds) Bildverarbeitung für die Medizin 2008. Springer, pp 56–61Google Scholar
  21. 21.
    Pearson K (1905) The problem of the random walk. Nature 72:342CrossRefGoogle Scholar
  22. 22.
    Grady L, Sinop AK (2008) Fast approximate random walker segmentation using eigenvector precomputation. In: CVPR 2008. IEEE, pp 1–8Google Scholar
  23. 23.
    Andrews S, Hamarneh G, Saad A (2010) Fast random walker with priors using precomputation for interactive medical image segmentation. In: MICCAI, pp 9–16Google Scholar
  24. 24.
    Gueziri H-E, McGuffin MJ, Laporte C (2016) A generalized graph reduction framework for interactive segmentation of large images. CVIU 150:44–57Google Scholar
  25. 25.
    Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, Hastenteufel M, Kunert T, Meinzer H-P (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604CrossRefPubMedGoogle Scholar
  26. 26.
    Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:29CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© CARS 2017

Authors and Affiliations

  1. 1.Computer-Assisted Applications in Medicine (CAiM)ETH ZurichZurichSwitzerland
  2. 2.Computer Assisted Research and Development (CARD) GroupUniversity Hospital Balgrist, University of ZurichZurichSwitzerland

Personalised recommendations