Advertisement

Comprehensive preclinical evaluation of a multi-physics model of liver tumor radiofrequency ablation

  • Chloé AudigierEmail author
  • Tommaso Mansi
  • Hervé Delingette
  • Saikiran Rapaka
  • Tiziano Passerini
  • Viorel Mihalef
  • Marie-Pierre Jolly
  • Raoul Pop
  • Michele Diana
  • Luc Soler
  • Ali Kamen
  • Dorin Comaniciu
  • Nicholas Ayache
Original Article

Abstract

Purpose

We aim at developing a framework for the validation of a subject-specific multi-physics model of liver tumor radiofrequency ablation (RFA).

Methods

The RFA computation becomes subject specific after several levels of personalization: geometrical and biophysical (hemodynamics, heat transfer and an extended cellular necrosis model). We present a comprehensive experimental setup combining multimodal, pre- and postoperative anatomical and functional images, as well as the interventional monitoring of intra-operative signals: the temperature and delivered power.

Results

To exploit this dataset, an efficient processing pipeline is introduced, which copes with image noise, variable resolution and anisotropy. The validation study includes twelve ablations from five healthy pig livers: a mean point-to-mesh error between predicted and actual ablation extent of 5.3 ± 3.6 mm is achieved.

Conclusion

This enables an end-to-end preclinical validation framework that considers the available dataset.

Keywords

Computational modeling Radiofrequency ablation Preclinical evaluation 

Notes

Acknowledgements

Part of this work was funded by Inria, Siemens Healthcare, IHU Strasbourg (SimulAB project) and by the European Research Council (ERC Advanced Grant MedYMA 2011-291080). The authors are grateful to Gael Fourré, Franck Blindauer, Mourad Bouhadjar and Rodrigo Cararo at the IHU Strasbourg for their valuable assistance in performing the experimental procedures.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

This articles does not contain patient data.

Supplementary material

11548_2016_1517_MOESM1_ESM.pdf (888 kb)
Supplementary material 1 (pdf 888 KB)

References

  1. 1.
    Hall SK, Ooi EH, Payne SJ (2015) Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. Int J Hyperth 31(5):538CrossRefGoogle Scholar
  2. 2.
    Patterson EJ, Scudamore CH, Owen DA, Nagy AG, Buczkowski AK (1998) Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size. Ann Surg 227(4):559CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Crezee J, Lagendijk J (1990) Experimental verification of bioheat transfer theories: measurement of temperature profiles around large artificial vessels in perfused tissue. Phys Med Biol 35(7):905CrossRefPubMedGoogle Scholar
  4. 4.
    Chang IA, Nguyen UD (2004) Thermal modeling of lesion growth with radiofrequency ablation devices. Biomed Eng Online 3(1):27CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schumann C, Rieder C, Haase S, Teichert K, Süss P, Isfort P, Bruners P, Preusser T (2015) Interactive multi-criteria planning for radiofrequency ablation. Int J Comput Assist Radiol Surg 10:1–11CrossRefGoogle Scholar
  6. 6.
    Jiang Y, Mulier S, Chong W, Diel Rambo M, Chen F, Marchal G, Ni Y (2010) Formulation of 3D finite elements for hepatic radiofrequency ablation. Int J Modell Identif Control 9(3):225CrossRefGoogle Scholar
  7. 7.
    Altrogge I, Preusser T, Kroger T, Haase S, Patz T, Kirby RM (2012) Sensitivity analysis for the optimization of radiofrequency ablation in the presence of material parameter uncertainty. Int J Uncertain Quantif 2(3):295–321CrossRefGoogle Scholar
  8. 8.
    Payne S, Flanagan R, Pollari M, Alhonnoro T, Bost C, O’Neill D, Peng T, Stiegler P (2011) Image-based multi-scale modelling and validation of radio-frequency ablation in liver tumours. Philos Trans R Soc A 369(1954):4233CrossRefGoogle Scholar
  9. 9.
    Audigier C, Mansi T, Delingette H, Rapaka S, Mihalef V, Boctor E, Choti M, Kamen A, Ayache N, Comaniciu D (2015) Efficient lattice Boltzmann solver for patient-specific radiofrequency ablation of hepatic tumors. IEEE Trans Med Imaging 34(7):1576CrossRefGoogle Scholar
  10. 10.
    Chen X, Saidel GM (2009) Mathematical modeling of thermal ablation in tissue surrounding a large vessel. J Biomech 131:5–24Google Scholar
  11. 11.
    Audigier C, Mansi T, Delingette H, Rapaka S, Mihalef V, Carnegie D, Boctor E, Choti M, Kamen A, Comaniciu D, Ayache N, (2014) Lattice-Boltzmann method for fast patient-specific simulation of liver tumor ablation from CT images. In: MICCAI workshop ABDIGoogle Scholar
  12. 12.
    Rieder C, Kroeger T, Schumann C, Hahn HK (2011) GPU-based real-time approximation of the ablation zone for radiofrequency ablation. Trans Vis Comput Gr 17(12):1812CrossRefGoogle Scholar
  13. 13.
    Frericks BB, Ritz JP, Albrecht T, Valdeig S, Schenk A, Wolf KJ, Lehmann K (2008) Influence of intrahepatic vessels on volume and shape of percutaneous thermal ablation zones: in vivo evaluation in a porcine model. Investig Radiol 43(4):211CrossRefGoogle Scholar
  14. 14.
    Pennes HH (1998) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 85(1):5PubMedGoogle Scholar
  15. 15.
    Schwen LO, Krauss M, Niederalt C, Gremse F, Kiessling F, Schenk A, Preusser T, Kuepfer L (2014) Spatio-temporal simulation of first pass drug perfusion in the liver. PLoS Comput Biol 10(3):e1003499CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    ONeill D, Peng T, Stiegler P, Mayrhauser U, Koestenbauer S, Tscheliessnigg K, Payne S (2011) A three-state mathematical model of hyperthermic cell death. Ann Biomed Eng 39:570CrossRefGoogle Scholar
  17. 17.
    Goldberg SN, Gazelle GS, Compton CC, Mueller PR, Tanabe KK (2000) Treatment of intrahepatic malignancy with radiofrequency ablation. Cancer 88(11):2452CrossRefPubMedGoogle Scholar
  18. 18.
    Lardo AC, McVeigh ER, Jumrussirikul P, Berger RD, Calkins H, Lima J, Halperin HR (2000) Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation 102(6):698CrossRefPubMedGoogle Scholar
  19. 19.
    Dickfeld T, Kato R, Zviman M, Nazarian S, Dong J, Ashikaga H, Lardo AC, Berger RD, Calkins H, Halperin H (2007) Characterization of acute and subacute radiofrequency ablation lesions with nonenhanced magnetic resonance imaging. Heart Rhythm 4(2):208CrossRefPubMedGoogle Scholar
  20. 20.
    Soler L, Nicolau S, Pessaux P, Mutter D, Marescaux J (2014) Characterization of acute and subacute radiofrequency ablation lesions with nonenhanced magnetic resonance imaging. Hepatobiliary Surg Nutr. 3(2):73PubMedPubMedCentralGoogle Scholar
  21. 21.
    Gulsun MA, Tek H (2006) 3D modeling of coronary arteries. In: MICCAI workshop CVIIGoogle Scholar
  22. 22.
    Guetter C, Xue H, Chefd’Hotel C, Guehring J (2011) Efficient symmetric and inverse-consistent deformable registration through interleaved optimization. In: IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 590–593Google Scholar
  23. 23.
    Horng TL, Lin WL, Liauh CT, Shih TC (2007) Effects of pulsatile blood flow in large vessels on thermal dose distribution during thermal therapy. Med Phys 34(4):1312CrossRefPubMedGoogle Scholar
  24. 24.
    Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau S, Talbot H, Courtecuisse H, Bousquet G, Peterlik I, Cotin S, (2012) Sofa: a multi-model framework for interactive physical simulation. In: Soft tissue biomechanical modeling for computer assisted surgery. Springer, pp 283–321Google Scholar
  25. 25.
    Nithiarasu P, Seetharamu K, Sundararajan T (1997) Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Transf 40(16):3955CrossRefGoogle Scholar
  26. 26.
    Guo Z, Zhao T (2002) Lattice-Boltzmann model for incompressible flows through porous media. Phys Rev E 66(3):036304CrossRefGoogle Scholar
  27. 27.
    Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Ann Rev Fluid Mech 30(1):329CrossRefGoogle Scholar
  28. 28.
    Pan C, Luo LS, Miller CT (2006) An evaluation of Lattice Boltzmann schemes for porous medium flow simulation. Comput Fluids 35(8):898CrossRefGoogle Scholar
  29. 29.
    Peng T, ONeill D, Payne S (2011) A two-equation coupled system for determination of liver tissue temperature during thermal ablation. Int J Heat Mass Transf 54(9):2100CrossRefGoogle Scholar
  30. 30.
    Breen M, Chen X, Wilson D, Saidel, (2002) Modeling cellular thermal damage from radio-frequency ablation. In :EMBS/BMES conference, vol 1. IEEE, p 715Google Scholar
  31. 31.
    Livraghi T, Goldberg SN, Lazzaroni S, Meloni F, Solbiati L, Gazelle GS (1999) Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection. Radiology 210(3):655CrossRefPubMedGoogle Scholar
  32. 32.
    Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2007) Fast automatic heart chamber segmentation from 3D CT data using marginal space learning and steerable features. In: ICCV. IEEE, pp 1–8Google Scholar
  33. 33.
    Kröger T, Altrogge I, Preusser T, Pereira PL, Schmidt D, Weihusen A, Peitgen HO (2006) Numerical simulation of radio frequency ablation with state dependent material parameters in three space dimensions. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 380–388Google Scholar
  34. 34.
    Audigier C, Mansi T, Delingette H, Rapaka S, Mihalef V, Pop R, Diana M, Soler L, Kamen A, Comaniciu D, Ayache N (2015) Challenges to validate multi-physics model of liver tumor radiofrequency ablation from pre-clinical data. In: MICCAI workshop on computational biomechanics for medicine XGoogle Scholar

Copyright information

© CARS 2017

Authors and Affiliations

  • Chloé Audigier
    • 1
    • 2
    Email author return OK on get
  • Tommaso Mansi
    • 2
  • Hervé Delingette
    • 1
  • Saikiran Rapaka
    • 2
  • Tiziano Passerini
    • 2
  • Viorel Mihalef
    • 2
  • Marie-Pierre Jolly
    • 2
  • Raoul Pop
    • 3
  • Michele Diana
    • 3
  • Luc Soler
    • 3
    • 4
  • Ali Kamen
    • 2
  • Dorin Comaniciu
    • 2
  • Nicholas Ayache
    • 1
  1. 1.Université Côte d’Azur and Inria Sophia-Antipolis Méditerranée Asclepios teamInria Sophia AntipolisFrance
  2. 2.Medical Imaging Technologies, Siemens HealthcarePrincetonUSA
  3. 3.IHU - Institut de Chirugie Guidée Par L’ImageStrasbourgFrance
  4. 4.IRCAD - Institut de Recherche Contre Les Cancers de L’Appareil DigestifStrasbourgFrance

Personalised recommendations