MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions

  • Martin Klemm
  • Thomas Kirchner
  • Janek Gröhl
  • Dominique Cheray
  • Marco Nolden
  • Alexander Seitel
  • Harald Hoppe
  • Lena Maier-Hein
  • Alfred M. Franz
Original Article

Abstract

Purpose

Due to rapid developments in the research areas of medical imaging, medical image processing and robotics, computer-assisted interventions (CAI) are becoming an integral part of modern patient care. From a software engineering point of view, these systems are highly complex and research can benefit greatly from reusing software components. This is supported by a number of open-source toolkits for medical imaging and CAI such as the medical imaging interaction toolkit (MITK), the public software library for ultrasound imaging research (PLUS) and 3D Slicer. An independent inter-toolkit communication such as the open image-guided therapy link (OpenIGTLink) can be used to combine the advantages of these toolkits and enable an easier realization of a clinical CAI workflow.

Methods

MITK-OpenIGTLink is presented as a network interface within MITK that allows easy to use, asynchronous two-way messaging between MITK and clinical devices or other toolkits. Performance and interoperability tests with MITK-OpenIGTLink were carried out considering the whole CAI workflow from data acquisition over processing to visualization.

Results

We present how MITK-OpenIGTLink can be applied in different usage scenarios. In performance tests, tracking data were transmitted with a frame rate of up to 1000 Hz and a latency of 2.81 ms. Transmission of images with typical ultrasound (US) and greyscale high-definition (HD) resolutions of \(640\times 480\) and \(1920\times 1080\) is possible at up to 512 and 128 Hz, respectively.

Conclusion

With the integration of OpenIGTLink into MITK, this protocol is now supported by all established open-source toolkits in the field. This eases interoperability between MITK and toolkits such as PLUS or 3D Slicer and facilitates cross-toolkit research collaborations. MITK and its submodule MITK-OpenIGTLink are provided open source under a BSD-style licence (http://mitk.org).

Keywords

Computer-assisted interventions Image-guided therapy Ultrasound Interoperability OpenIGTLink MITK 

Notes

Acknowledgments

The authors would like to acknowledge support from the European Union through the ERC starting Grant COMBIOSCOPY under the New Horizon Framework Programme Grant Agreement ERC-2015-StG-37960.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no known conflicts of interest associated with this publication.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This articles does not contain patient data.

References

  1. 1.
    Arata J, Kenmotsu H, Takagi M, Hori T, Miyagi T, Fujimoto H, Kajita Y, Hayashi Y, Chinzei K, Hashizume M (2013) Surgical bedside master console for neurosurgical robotic system. Int J Comput Assist Radiol Surg 8(1):75–86CrossRefPubMedGoogle Scholar
  2. 2.
    Arata J, Kozuka H, Kim HW, Takesue N, Vladimirov B, Sakaguchi M, Tokuda J, Hata N, Chinzei K, Fujimoto H (2010) Open core control software for surgical robots. Int J Comput Assist Radiol Surg 5(3):211–220CrossRefPubMedGoogle Scholar
  3. 3.
    Arata J, Tada Y, Kozuka H, Wada T, Saito Y, Ikedo N, Hayashi Y, Fujii M, Kajita Y, Mizuno M, Wakabayashi T, Yoshida J, Fujimoto H (2011) Neurosurgical robotic system for brain tumor removal. Int J Comput Assist Radiol Surg 6(3):375–385CrossRefPubMedGoogle Scholar
  4. 4.
    Clarkson MJ, Zombori G, Thompson S, Totz J, Song Y, Espak M, Johnsen S, Hawkes D, Ourselin S (2014) The NifTK software platform for image-guided interventions: platform overview and NiftyLink messaging. Int J Comput Assist Radiol Surg 10(3):301–316CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cleary K, Peters TM (2010) Image-guided interventions: technology review and clinical applications. Annu Rev Biomed Eng 12(1):119–142CrossRefPubMedGoogle Scholar
  6. 6.
    Correll K, Barendt N, Branicky M (2005) Design considerations for software only implementations of the IEEE 1588 precision time protocol. In: Conference on IEEE, vol 1588, pp 10–12Google Scholar
  7. 7.
    Egger J, Tokuda J, Chauvin L, Freisleben B, Nimsky C, Kapur T, Wells W (2012) Integration of the OpenIGTLink network protocol for image-guided therapy with the medical platform MeVisLab. Int J Med Robot Comput Assist Surg 8(3):282–290CrossRefGoogle Scholar
  8. 8.
    Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Franz AM, Seitel A, Servatius M, Zollner C, Gergel I, Wegner I, Neuhaus J, Zelzer S, Nolden M, Gaa J, Mercea P, Yung K, Sommer CM, Radeleff BA, Schlemmer HP, Kauczor HU, Meinzer HP, Maier-Hein L (2012) Simplified development of image-guided therapy software with MITK-IGT. In: Proceedings of SPIE, medical imaging 2012: image-guided procedures, robotic interventions, and modeling, vol 8316Google Scholar
  10. 10.
    Ibanez L, Schroeder W, Ng L, Cates J (2005) The ITK software guide. The ITK software guide 804Google Scholar
  11. 11.
    Ince DC, Hatton L, Graham-Cumming J (2012) The case for open computer programs. Nature 482:485–488CrossRefPubMedGoogle Scholar
  12. 12.
    Kang HJ, Stolka PJ, Boctor E (2011) OpenIGTLinkMUSiiC : a standard communications protocol for advanced ultrasound research. MIDAS J 1–12Google Scholar
  13. 13.
    Kilgus T, Heim E, Haase S, Prüfer S, Müller M, Seitel A, Fangerau M, Wiebe T, Iszatt J, Schlemmer HP, Hornegger J, Yen K, Maier-Hein L (2015) Mobile markerless augmented reality and its application in forensic medicine. Int J Comput Assist Radiol Surg 5(1):573–586CrossRefGoogle Scholar
  14. 14.
    Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61:1–11CrossRefGoogle Scholar
  15. 15.
    Maier-Hein L, Tekbas A, Seitel A, Pianka F, Muller SA, Satzl S, Schawo S, Radeleff B, Tetzlaff R, Franz AM, Muller-Stich BP, Wolf I, Kauczor HU, Schmied BM, Meinzer HP (2008) In vivo accuracy assessment of a needle-based navigation system for CT-guided radiofrequency ablation of the liver. Med Phys 35(12):5385CrossRefPubMedGoogle Scholar
  16. 16.
    März K, Franz AM, Seitel A, Winterstein A, Bendl R, Zelzer S, Nolden M, Meinzer HP, Maier-Hein L (2014) MITK-US: real-time ultrasound support within MITK. Int J Comput Assist Radiol Surg 9(3):411–420CrossRefPubMedGoogle Scholar
  17. 17.
    März K, Franz AM, Seitel A, Winterstein A, Hafezi M, Saffari A, Bendl R, Stieltjes B, Meinzer HP, Mehrabi A, Maier-Hein L (2014) Interventional real-time ultrasound imaging with an integrated electromagnetic field generator. Int J Comput Assist Radiol Surg 9(5):759–768CrossRefPubMedGoogle Scholar
  18. 18.
    McCormick M, Liu X, Jomier J, Marion C, Ibanez L (2014) ITK: enabling reproducible research and open science. Front Neuroinf 8(February):13Google Scholar
  19. 19.
    Müller M, Rassweiler MC, Klein J, Seitel A, Gondan M, Baumhauer M, Teber D, Rassweiler JJ, Meinzer HP, Maier-Hein L (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg 8(4):663–675Google Scholar
  20. 20.
    Neuhaus J, Wegner I, Käst J, Baumhauer M, Seitel A, Gergel I, Nolden M, Maleike D, Wolf I, Meinzer H (2009) MITK-IGT: eine navigationskomponente für das medical imaging interaction toolkit. Bildverarb die Med 2009:454–458Google Scholar
  21. 21.
    Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I (2013) The medical imaging interaction toolkit: challenges and advances: 10 years of open-source development. Int J Comput Assist Radiol Surg 8(4):607–620CrossRefPubMedGoogle Scholar
  22. 22.
    Ordas S, Yaniv Z, Cheng P, Tokuda J, Liu H, Hata N, Cleary K (2009) Interfacing proprietary hardware with the image-guided surgery toolkit (IGSTK): a case for the OpenIGTLink protocol. In: proceedings of SPIE, vol 7264, pp 72640F–72640F–7Google Scholar
  23. 23.
    Pieper S, Halle M, Kikinis R (2004) 3D Slicer. In: 2004 2nd IEEE international symposium on biomedical imaging: nano to macro (IEEE Cat No. 04EX821)Google Scholar
  24. 24.
    Seitel A, Bellemann N, Hafezi M, Franz AM, Servatius M, Saffari A, Kilgus T, Schlemmer HP, Mehrabi A, Radeleff BA, Maier-Hein L (2015) Towards markerless navigation for percutaneous needle insertions. Int J Comput Assist Radiol Surg 11:107–117CrossRefPubMedGoogle Scholar
  25. 25.
    Seitel A, Yung K, Mersmann S, Kilgus T, Groch A, Dos Santos TR, Franz AM, Nolden M, Meinzer HP, Maier-Hein L (2012) MITK-ToF-range data within MITK. Int J Comput Assist Radiol Surg 7(1):87–96CrossRefPubMedGoogle Scholar
  26. 26.
    Stolka PJ, Kang Hj, Boctor E (2010) The MUSiiC toolkit: modular real-time toolkit for advanced ultrasound research. MIDAS J Comput Assist Interv 1–11Google Scholar
  27. 27.
    Su H, Shang W, Member S, Cole G, Li G, Member S, Harrington K, Camilo A, Tokuda J, Tempany CM, Hata N, Fischer GS (2014) Piezoelectrically actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE/ASME Trans Mech 1:1–13Google Scholar
  28. 28.
    Teather RJ, Pavlovych A, Stuerzlinger W, MacKenzie IS (2009) Effects of tracking technology, latency, and spatial jitter on object movement. In: Proceedings of 3DUI— IEEE symposium on 3D user interfaces 2009, pp 43–50Google Scholar
  29. 29.
    Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby AJ, Kapur T, Pieper S, Burdette EC, Fichtinger G, Tempany CM, Hata N, Alexandra J, Kapur T, Pieper S, Burdette EC, Fichtinger G, Clare M, Hata N (2009) OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robot Comput Assist Surg 5(4):423–434CrossRefGoogle Scholar
  30. 30.
    Wolf I, Vetter M, Wegner I, Nolden M, Bottger T, Hastenteufel M, Schobinger M, Kunert T, Meinzer HP (2004) The medical imaging interaction toolkit (MITK) a toolkit facilitating the creation of interactive software by extending VTK and ITK. Med Imaging 2004:16–27Google Scholar
  31. 31.
    Wu X, Taylor RH (2003) A framework for calibration of electromagnetic surgical navigation systems. In: Proceedings 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003), vol 1, pp 547–552Google Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  1. 1.Laboratory for Computer-Assisted Medicine, Department of Electrical Engineering and Information TechnologyOffenburg UniversityOffenburgGermany
  2. 2.German Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations