Advertisement

GPU-based RFA simulation for minimally invasive cancer treatment of liver tumours

  • Panchatcharam MariappanEmail author
  • Phil Weir
  • Ronan Flanagan
  • Philip Voglreiter
  • Tuomas Alhonnoro
  • Mika Pollari
  • Michael Moche
  • Harald Busse
  • Jurgen Futterer
  • Horst Rupert Portugaller
  • Roberto Blanco Sequeiros
  • Marina Kolesnik
Original Article

Abstract

Purpose

Radiofrequency ablation (RFA) is one of the most popular and well-standardized minimally invasive cancer treatments (MICT) for liver tumours, employed where surgical resection has been contraindicated. Less-experienced interventional radiologists (IRs) require an appropriate planning tool for the treatment to help avoid incomplete treatment and so reduce the tumour recurrence risk. Although a few tools are available to predict the ablation lesion geometry, the process is computationally expensive. Also, in our implementation, a few patient-specific parameters are used to improve the accuracy of the lesion prediction.

Methods

Advanced heterogeneous computing using personal computers, incorporating the graphics processing unit (GPU) and the central processing unit (CPU), is proposed to predict the ablation lesion geometry. The most recent GPU technology is used to accelerate the finite element approximation of Penne’s bioheat equation and a three state cell model. Patient-specific input parameters are used in the bioheat model to improve accuracy of the predicted lesion.

Results

A fast GPU-based RFA solver is developed to predict the lesion by doing most of the computational tasks in the GPU, while reserving the CPU for concurrent tasks such as lesion extraction based on the heat deposition at each finite element node. The solver takes less than 3 min for a treatment duration of 26 min. When the model receives patient-specific input parameters, the deviation between real and predicted lesion is below 3 mm.

Conclusion

A multi-centre retrospective study indicates that the fast RFA solver is capable of providing the IR with the predicted lesion in the short time period before the intervention begins when the patient has been clinically prepared for the treatment.

Keywords

Radiofrequency ablation RFA solver Perfusion GPU Bioheat equation 

Notes

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Bray F, Jemal A, Grey N, Jacques F, Forman D (2012) Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol 13(8):790–801CrossRefPubMedGoogle Scholar
  2. 2.
    Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53(3):1020–1022CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Audigier C, Mansi T et al (2015) Efficient lattice Boltzmann solver for patient-ppecific radiofrequency ablation of hepatic tumors. IEEE Trans Med Imaging 34(7):1576–1589CrossRefGoogle Scholar
  4. 4.
    Masunaga S, Ono K et al (1996) Clinical usefulness of determining the rate of thermal clearance within heated tumours. Jpn J Clin Oncol 26(6):428–437CrossRefPubMedGoogle Scholar
  5. 5.
    Van Beers BE, Leconte I et al (2001) Hepatic perfusion parameters in chronic liver disease: dynamic CT measurements correlated with disease severity. AJR AM J Roentgenol 176(3):667–673CrossRefPubMedGoogle Scholar
  6. 6.
    Huang HW (2013) Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors. Med Phys 40(7):73303-1–73303-13CrossRefGoogle Scholar
  7. 7.
    Hall SK, Ooi EH, Payne SJ (2015) Cell death, perfusion and electrical parameters are critical models of hepatic radiofrequency ablation. Int J Hyperthermia 31(5):538–550CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Audigier C, Mansi T et al (2014) Parameter estimation for personalization of liver tumor radiofrequency ablation. In: Abdominal imaging. Computational and clinical applications: 6th international workshop, MICCAI (2014). Lecture Notes in Computer Science, vol 8876. Springer, Cambridge, pp 3–12Google Scholar
  9. 9.
    Khlebnikov R, Muehl J (2010) Effects of needle placement inaccuracies in hepatic radiofrequency tumor ablation. Conf Proc IEEE Eng Med Bio Soc 716–721Google Scholar
  10. 10.
    Villard C, Soler L, Gangi A (2005) Radiofrequency ablation of hepatic tumors: simulation, planning, and contribution of virtual reality and hepatics. Comput Methods Biomech Biomed Eng 8(4):215–227CrossRefGoogle Scholar
  11. 11.
    Abdullah BJ, Yeong CH et al (2014) Robot-assisted radiofrequency ablation of primary and secondary liver tumours: early experience. Eur Radiol 24(1):79–85CrossRefPubMedGoogle Scholar
  12. 12.
    Jain MK, Wolf PD (1999) Temperature-controlled and constant-power radio-frequency ablation: what affects lesion growth? IEEE Trans Biomed Eng 46(12):1405–1412Google Scholar
  13. 13.
    Liang HH, Peng ZW et al (2010) Efficacy of combining temperature- and power-controlled radiofrequency ablation for malignant liver tumors. Chin J Cancer 29(4):408–412CrossRefPubMedGoogle Scholar
  14. 14.
    Goldberg SN (2001) Radiofrequency tumour ablation: principles and techniques. Eur J Ultrasound 13(2):129–147CrossRefPubMedGoogle Scholar
  15. 15.
    Angiodynamics (2015) RITA 1500X User’s guide and service manual. http://www.angiodynamics.com/uploads/pdf/042210-040340_RITA1500XIFU.pdf Accessed 10 Oct 2015
  16. 16.
    AngioDynamics (2015) RITA starburst model 75, StartBurst SDE electrosurgical device, starburst XL electrosurgical device, MRI compatible StarBurst XL device, MRI compatible StarBurst semi-flex electrosurgical device instructions for USE. http://www.angiodynamics.com/uploads/pdf/051514-084641_160-104121Rev06[1].pdf Accessed 10 Oct 2015
  17. 17.
    Shumann C, Rieder C, Haase S et al (2015) Interactive multi-criteria planning for radiofrequency ablation. Int J Comput Assist Radiol Surg 10(6):879–889CrossRefGoogle Scholar
  18. 18.
    Kröger T, Altrogge I et al (2006) Numerical simulation of radio frequency ablation with state dependent material parameters in three space dimensions. Med Image Comput Assist Interv 9(Pt 2):380–388Google Scholar
  19. 19.
    Jia X, Yan G, Gu X, Jiang SB (2012) Fast Monte Carlo simulation for patient-specific CT/CBCT imaging dose calculation. Phys Med Biol 57(3):577CrossRefPubMedGoogle Scholar
  20. 20.
    Jia X, Lou Y, Lewis J et al (2011) GPU-based fast low-dose cone beam CT reconstruction via total variation. J Xray Sci Technol 19(2):139–154PubMedGoogle Scholar
  21. 21.
    NVIDIA Corporation (2015) NVIDIA CUDA C programming guide, Version 7.0. docs.nvidia.com/cuda/cuda-c-programming-guide/. Accessed 12 Dec 2015Google Scholar
  22. 22.
    Cheng J, Grossman M, McKercher T (2014) Professional CUDA C programming. John & Wiley Sons Inc., IndianapolisGoogle Scholar
  23. 23.
    Pennes HH (1948) Analysis of tissue and arterial blood temperature in the resting human forearm. J Appl Physiol 1(2):93–122PubMedGoogle Scholar
  24. 24.
    Kröger T, Pätz T et al (2010) Fast estimation of the vascular cooling in RFA based on numerical simulation. Open Biomed Eng J 4:16–26PubMedPubMedCentralGoogle Scholar
  25. 25.
    Rieder C, Kroeger T, Schumann C, Hahn HK (2011) GPU-based real-time approximation of the ablation zone for radiofrequency ablation. IEEE Trans Vis Comput Graph 17(12):1812–1821CrossRefPubMedGoogle Scholar
  26. 26.
    Borsic A, Hoffer E, Attardo EA (2014) GPU-accelerated real time simulation of radio frequency ablation thermal dose. In: 40th annual northeast bioengineering conference (NEBEC)Google Scholar
  27. 27.
    O’Neill DP, Peng T et al (2011) A three-state mathematical model of hyperthermic cell death. Ann Biomed Eng 39(1):570–579CrossRefPubMedGoogle Scholar
  28. 28.
    Payne S, Flanagan R et al (2011) Image-based multi-scale modelling and validation of radio frequency ablation in liver tumours. Phil Trans R Soc A 369:4233–4254CrossRefPubMedGoogle Scholar
  29. 29.
    Alhonnoro T, Pollari M et al (2010) Vessel Segmentation for ablation treatment planning and simulation. Med Image Comput Comput Assist Interv 13(Pt 1):45–52PubMedGoogle Scholar
  30. 30.
    Nolden M, Zelzer S et al (2013) The medical imaging interaction toolkit: challenges and advances: 10 years of open-source development. Int J Comput Assist Radiol Surg 8(4):607–620CrossRefPubMedGoogle Scholar
  31. 31.
    Goetti R, Reiner CS et al (2012) Quantitative perfusion analysis of malignant liver tumors: dynamic computed tomography and contrast-enhanced ultrasound. Invest Radiol 47(1):18–24CrossRefPubMedGoogle Scholar
  32. 32.
    Van Amerongen MJ, Garnov N et al (2016) Liver CT perfusion values for colorectal liver metastases—a protocol for future use in radiofrequency simulation software. In: Insights into imaging: ECR 2016 Book of Abstracts-C-Scientific and Educational ExhibitsGoogle Scholar
  33. 33.
    Stoer J, Bulirsch R (2002) Introduction to numerical analysis, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  34. 34.
    Astrom K, Hägglund T (1995) PID controllers, theory, design and tunning, 2nd edn. Instrument Society of America, Research Triangle ParkGoogle Scholar
  35. 35.
    Eisenberg MA, Malvern LE (1973) On finite element integration in natural coordinates. Int J Numer Meth Engng 7(4):574–575CrossRefGoogle Scholar
  36. 36.
    Ebbini ES, Umemura SI, Ibbini M, Cain CA (1988) A cylindrical-section ultrasound phased-array applicator for hyperthermia cancer therapy. IEE Trans Ultrson Ferroelectr Freq Control 35(5):561–572CrossRefGoogle Scholar
  37. 37.
    Werner J, Buse M (1988) Temperature profiles with respect to inhomogeneity and geometry of the human body. J Appl Physiol 65(3):1110–1118PubMedGoogle Scholar
  38. 38.
    Iturralde P, Guevara-Valdivia M, Laura R, Argelia M, Luis C (2002) Radiofrequency ablation of multiple accessory pathways. Europace 4(3):273–280Google Scholar
  39. 39.
    Quan YS, He Q, Wang MQ (2012) Transcatheter arterial chemoembolization: history for more than 30 Years. ISRN Gastroenterol 2012 (Article ID 480650):8Google Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  • Panchatcharam Mariappan
    • 1
    Email author
  • Phil Weir
    • 1
  • Ronan Flanagan
    • 1
  • Philip Voglreiter
    • 2
  • Tuomas Alhonnoro
    • 3
  • Mika Pollari
    • 3
  • Michael Moche
    • 4
  • Harald Busse
    • 4
  • Jurgen Futterer
    • 5
  • Horst Rupert Portugaller
    • 6
  • Roberto Blanco Sequeiros
    • 7
  • Marina Kolesnik
    • 8
  1. 1.NUMA Engineering Services LtdDundalkIreland
  2. 2.Institute for Computer Graphics and VisionGraz University of TechnologyGrazAustria
  3. 3.Department of Neuroscience and Biomedical EngineeringAalto UniversityEspooFinland
  4. 4.Department of Diagnostic and Interventional RadiologyLeipzig University HospitalLeipzigGermany
  5. 5.Radbound University Nijmegen Medical CenterNijmegenThe Netherlands
  6. 6.University Clinic of Radiology GrazGrazAustria
  7. 7.Medical Imaging Center of Southwest FinlandTurku University HospitalTurkuFinland
  8. 8.Fraunhofer Institute for Applied Information TechnologySankt AugustinGermany

Personalised recommendations