Advertisement

Planning of mandibular reconstructions based on statistical shape models

  • Stefan RaithEmail author
  • Sebastian Wolff
  • Timm Steiner
  • Ali Modabber
  • Michael Weber
  • Frank Hölzle
  • Horst Fischer
Original Article

Abstract

Purpose

The reconstruction of large continuity defects of the mandible is a challenging task, especially when the shape of the missing part is not known prior to operation. Today, the surgical planning is based mainly on visual judgment and the individual skills and experience of the surgeons. The objective of the current study was to develop a computer-based method that is capable of proposing a reconstruction shape from a known residual mandible part.

Methods

The volumetric data derived from 60 CT scans of mandibles were used as the basis for the novel numerical procedure. To find a standardized representation of the mandible shapes, a mesh was elaborated that follows the course of anatomical structures with a specially developed topology of quadrilaterals. These standard meshes were transformed with defined mesh modifications toward each individual mandible surface to allow for further statistical evaluations. The data were used to capture the inter-individual shape variations that were considered as random field variations and mathematically evaluated with principal component analysis. With this information of the mandibular shape variations, an algorithm was developed that proposes shapes for reconstruction planning based on given residual mandible geometry parts.

Results

The accuracy of the novel method was evaluated on six different virtually defined continuity defects that were each created on three mandibles that were not part of the initial database. Virtual reconstructions showed sufficient accuracy of the algorithm for the planning of surgical reconstructions, with average deviations toward the actual geometry of \(1.82 \pm 0.11\) mm for small missing parts and 5 mm for large hemi-lateral defects.

Conclusions

The presented algorithm may be a valuable tool for the planning of mandibular reconstructions. The proposed shapes can be used as templates for computer-aided manufacturing, e.g., with 3D printing devices that use biocompatible materials.

Keywords

Mandible Reconstruction Morphology Scaffolds Random field variations 3D printing 

Notes

Acknowledgments

We acknowledge financial support of the present study by the German Federal Ministry of Education and Research (Grant No. 13GW0016C). Furthermore, the support of DYNARDO Austria GmbH for providing licenses of the software tools Statistics on Structures and optiSLang is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards (Approval No. 2596/09, Technische Universität München, Germany).

Informed consent

For this type of study, formal consent is not required.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Bak M, Jacobson AS, Buchbinder D, Urken ML (2010) Contemporary reconstruction of the mandible. Oral Oncol 46(2):71–76PubMedCrossRefGoogle Scholar
  2. 2.
    Juergens P, Klug C, Krol Z, Beinemann J, Kim H, Reyes M, Guevara-Rojas G, Zeilhofer H-F, Ewers R, Schicho K (2011) Navigation-guided harvesting of autologous iliac crest graft for mandibular reconstruction. J Oral Maxillofac Surg 69(11):2915–2923PubMedCrossRefGoogle Scholar
  3. 3.
    Ayoub N, Ghassemi A, Rana M, Gerressen M, Riediger D, Hölzle F, Modabber A (2014) Evaluation of computer-assisted mandibular reconstruction with vascularized iliac crest bone graft compared to conventional surgery: a randomized prospective clinical trial. Trials 15(1):1–14CrossRefGoogle Scholar
  4. 4.
    Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci USA 107(30):13222–13227PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Modabber A, Möhlhenrich SC, Ayoub N, Hajji M, Raith S, Reich S, Steiner T, Ghassemi A, Hölzle F (2015) Computer-aided mandibular reconstruction with vascularized iliac crest bone flap and simultaneous implant surgery. J Oral Implantol 41(5):189–194CrossRefGoogle Scholar
  6. 6.
    Olsson P, Nysjö F, Hirsch J-M, Carlbom IB (2013) A haptics-assisted cranio-maxillofacial surgery planning system for restoring skeletal anatomy in complex trauma cases. Int J Comput Assist Radiol Surg 8(6):887–894PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Król Z, Chlebiej M, Zerfass P, Sader R, Zeilhofer HF, Mikołajczak P, Keeve E (2002) Surgery planning tools for the osseous grafting treatment. Biomed Tech (Berl) 47(Suppl 1):97–100CrossRefGoogle Scholar
  8. 8.
    Modabber A, Gerressen M, Stiller MB, Noroozi N, Füglein A, Hölzle F, Riediger D, Ghassemi A (2012) Computer-assisted mandibular reconstruction with vascularized iliac crest bone graft. Aesthetic Plast Surg 36(3):653–659PubMedCrossRefGoogle Scholar
  9. 9.
    Modabber A, Gerressen M, Ayoub N, Elvers D, Stromps J-P, Riediger D, Hölzle F, Ghassemi A (2013) Computer-assisted zygoma reconstruction with vascularized iliac crest bone graft. Int J Med Robot Comput Assist Surg 9(4):497–502CrossRefGoogle Scholar
  10. 10.
    Zachow S, Lamecker H, Elsholtz B, Stiller M (2005) Reconstruction of mandibular dysplasia using a statistical 3D shape model. Int Congr Ser 1281:1238–1243CrossRefGoogle Scholar
  11. 11.
    Lamecker H, Zachow S, Wittmers A, Weber B, Hege H, Isholtz B, Stiller M (2006) Automatic segmentation of mandibles in low-dose CT-data. Int J Comput Assist Radiol Surg 1:393Google Scholar
  12. 12.
    Kainmüller D, Lamecker H, Seim H, Zinser M, Zachow S (2009) Automatic extraction of mandibular nerve and bone from cone-beam CT data. Lect Notes Comput Sci 5762(Part 2):76–83CrossRefGoogle Scholar
  13. 13.
    Kim SG, Yi WJ, Hwang SJ, Choi SC, Lee SS, Heo MS, Huh KH, Kim TI, Hong H, Yoo JH (2012) Development of 3D statistical mandible models for cephalometric measurements. Imaging Sci Dent 42(3):175–182PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gollmer ST, Buzug TM (2012) Fully automatic shape constrained mandible segmentation from cone-beam CT data. In: 2012 9th IEEE international symposium on biomedical imaging (ISBI), pp 1272–1275Google Scholar
  15. 15.
    Lindner M, Bergmann C, Telle R, Fischer H (2014) Calcium phosphate scaffolds mimicking the gradient architecture of native long bones. J Biomed Mater Res A 102(10):3677–3684PubMedCrossRefGoogle Scholar
  16. 16.
    Reichert JC, Cipitria A, Epari DR, Saifzadeh S, Krishnakanth P, Berner A, Woodruff MA, Schell H, Mehta M, Schuetz MA, Duda GN, Hutmacher DW (2012) A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med 4(141):141ra93. doi: 10.1126/scitranslmed.3003720
  17. 17.
    Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319PubMedCrossRefGoogle Scholar
  18. 18.
    Lichte P, Pape HC, Pufe T, Kobbe P, Fischer H (2011) Scaffolds for bone healing: concepts, materials and evidence. Injury 42(6):569–573PubMedCrossRefGoogle Scholar
  19. 19.
    Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessmann M, Heiland M, Wolff KD, Smeets R (2012) Current trends and future perspectives of bone substitute materials—from space holders to innovative biomaterials. J Cranio-Maxillofac Surg 40(8):706–718CrossRefGoogle Scholar
  20. 20.
    Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H (2010) 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 30(12):2563–2567CrossRefGoogle Scholar
  21. 21.
    Modabber A, Ayoub N, Möhlhenrich SC, Goloborodko E, Sönmez TT, Ghassemi M, Loberg C, Lethaus B, Ghassemi A, Hölzle F (2014) The accuracy of computer-assisted primary mandibular reconstruction with vascularized bone flaps: iliac crest bone flap versus osteomyocutaneous fibula flap. Med Devices Evid Res 7:211–217CrossRefGoogle Scholar
  22. 22.
    Foley BD, Thayer WP, Honeybrook A, McKenna S, Press S (2013) Mandibular reconstruction using computer-aided design and computer-aided manufacturing: an analysis of surgical results. J Oral Maxillofac Surg 71(2):111–119CrossRefGoogle Scholar
  23. 23.
    Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563PubMedCrossRefGoogle Scholar
  24. 24.
    Chung MK, Qiu A, Seo S, Vorperian HK (2015) Unified heat kernel regression for diffusion. Kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images. Med Image Anal 22(1):63–76PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Seiler C, Pennec X, Reyes M (2012) Capturing the multiscale anatomical shape variability with polyaffine transformation trees. Med Image Anal 16(7):1371–1384PubMedCrossRefGoogle Scholar
  26. 26.
    Sorkine O, Cohen-Or D, Lipman Y, Alexa M, Rössl C, Seidel H-P (2004) Laplacian surface editing. In: Eurographics symposium on geometry processing, pp 175–184Google Scholar
  27. 27.
    Gower JC (1975) Generalized procrustes analysis. Psychometrika 40(1):33–51CrossRefGoogle Scholar
  28. 28.
    Horn B (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am 4(4):629–642CrossRefGoogle Scholar
  29. 29.
    Wolff S (2014) Robustness evaluation in sheet metal forming using statistics on structures (SoS) and optiSLang. In: Proceedings 32nd German ANSYS and CADFEM users’ meetingGoogle Scholar
  30. 30.
    Wolff S (2013) Simulation of random fields in structural design. In: 11th international probabilistic workshopGoogle Scholar
  31. 31.
    Kroon DJ (2011) Segmentation of the mandibular canal in cone-beam CT data. PhD thesis Universiteit TwenteGoogle Scholar
  32. 32.
    Kainmueller D, Lamecker H, Seim H, Zachow S (2009) Multi-object segmentation of head bones. In: MICCAI workshop head and neck auto-segmentation challenge, pp 1–11Google Scholar
  33. 33.
    Matthies HG, Brenner CE, Bucher C, Guedes Soares C (1997) Uncertainties in probabilistic numerical analysis of structures and solids—stochastic finite elements. Struct Saf 19(3):283–336CrossRefGoogle Scholar
  34. 34.
    Matthies HG, Bucher C (1999) Finite elements for stochastic media problems. Comput Methods Appl Mech Eng 168(1–4):3–17CrossRefGoogle Scholar
  35. 35.
    Wendland H (2004) Scattered data approximation: Cambridge monographs on applied and computational mathematics. Cambridge University Press, CambridgeGoogle Scholar
  36. 36.
    Brenner CE, Bucher C (1995) A contribution to the SFE-based reliability assessment of nonlinear structures under dynamic loading. Probab Eng Mech 10(4):265–273CrossRefGoogle Scholar
  37. 37.
    Li C-C, Der Kiureghian A (1993) Optimal discretization of random fields. J Eng Mech 119(6):1136–1154CrossRefGoogle Scholar
  38. 38.
    Bucher C (2009) Computational analysis of randomness in structural mechanics: structures and infrastructures book series, 1st edn. CRC Press, Boca Raton, FLGoogle Scholar
  39. 39.
    Nunes RF, Will J, Bayer V, Chittepu K (2009) Robustness Evaluation of brake systems concerned to squeal noise problem. In: Proceedings of the 7th Weimar optimization and stochastic days, pp 1–20Google Scholar
  40. 40.
    Roos D, Einzinger J, Bayer V (2009) Robust design optimization applied to structural, thermal and fluid analysis including manufacturing tolerances. In: Proceedings of the Weimar optimization and stochastic daysGoogle Scholar
  41. 41.
    Jewer DD, Boyd JB, Manktelow RT, Zuker RM, Rosen IB, Gullane PJ, Rotstein LE, Freeman JE (1989) Orofacial and mandibular reconstruction with the iliac crest free flap: a review of 60 cases and a new method of classification. Plast Reconstr Surg 84:391–403 (discussion 404–405) PubMedCrossRefGoogle Scholar
  42. 42.
    Skadłubowicz P, Król Z, Wróbel Z, Hefti F, Krieg A (2009) Using of statistical shape models for pelvis reconstruction in the oncologic surgery. J Med Informatics Technol 13:151–156Google Scholar
  43. 43.
    Weaver AA, Moody EA, Armstrong EG, Stitzel JD (2011) Image segmentation and registration algorithm to collect homologous landmarks for age-related thoracic morphometric analysis. Biomed Sci Instrum 47:70–76PubMedGoogle Scholar
  44. 44.
    Weaver AA, Schoell SL, Stitzel JD (2014) Morphometric analysis of variation in the ribs with age and sex. J Anat 225(2):246–261PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cerveri P, Marchente M, Chemello C, Confalonieri N, Manzotti A, Baroni G (2011) Advanced computational framework for the automatic analysis of the acetabular morphology from the pelvic bone surface for hip arthroplasty applications. Ann Biomed Eng 39(11):2791–2806PubMedCrossRefGoogle Scholar
  46. 46.
    Cootes TF, Beeston C (1999) A unified framework for atlas matching using active appearance models. Inf Process Med Imaging 1613:322–333CrossRefGoogle Scholar
  47. 47.
    Heimann T, Wolf I, Williams T, Meinzer H-P (2005) 3D active shape models using gradient descent optimization of description length. Inf Process Med Imaging 19:566–577PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang L, Hoffman EA, Reinhardt JM (2006) Atlas-driven lung lobe segmentation in volumetric X-ray CT images. IEEE Trans Med Imaging 25(1):1–16PubMedCrossRefGoogle Scholar
  49. 49.
    Probst FA, Mast G, Ermer M, Gutwald R, Schmelzeisen R, Pautke C, Otto S, Schiel S, Ehrenfeld M, Cornelius C-P, Metzger MC (2012) MatrixMANDIBLE preformed reconstruction plates—a two-year two-institution experience in 71 patients. J Oral Maxillofac Surg 70(11):657–666CrossRefGoogle Scholar
  50. 50.
    Metzger MC, Vogel M, Hohlweg-Majert B, Mast H, Fan X, Rüdell A, Schlager S (2011) Anatomical shape analysis of the mandible in Caucasian and Chinese for the production of preformed mandible reconstruction plates. J Cranio-Maxillo-Fac Surg 39(6):393–400CrossRefGoogle Scholar
  51. 51.
    Bou-Sleiman H, Iizuka T, Nolte L-P, Reyes M (2013) Population-based design of mandibular fixation plates with bone quality and morphology considerations. Ann Biomed Eng 41(2):377–384Google Scholar
  52. 52.
    Raith S, Varga V, Steiner T, Hölzle F, Fischer H (2016) Computational geometry assessment for morphometric analysis of the mandible. Comput Methods Biomech Biomed Eng:1–8. doi: 10.1080/10255842.2016.1196196
  53. 53.
    Warnke PH, Springer ING, Wiltfang J, Acil Y, Eufinger H, Wehmöller M, Russo PAJ, Bolte H, Sherry E, Behrens E, Terheyden H (2004) Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364(9436):766–770PubMedCrossRefGoogle Scholar
  54. 54.
    Warnke PH, Wiltfang J, Springer I, Acil Y, Bolte H, Kosmahl M, Russo PAJ, Sherry E, Lützen U, Wolfart S, Terheyden H (2006) Man as living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials 27(17):3163–3167PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  • Stefan Raith
    • 1
    Email author
  • Sebastian Wolff
    • 2
  • Timm Steiner
    • 3
  • Ali Modabber
    • 3
  • Michael Weber
    • 1
  • Frank Hölzle
    • 3
  • Horst Fischer
    • 1
  1. 1.Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalAachenGermany
  2. 2.DYNARDO Austria GmbHViennaAustria
  3. 3.Department of Oral and Maxillofacial SurgeryRWTH Aachen University HospitalAachenGermany

Personalised recommendations