On-patient see-through augmented reality based on visual SLAM

  • Nader MahmoudEmail author
  • Óscar G. Grasa
  • Stéphane A. Nicolau
  • Christophe Doignon
  • Luc Soler
  • Jacques Marescaux
  • J. M. M. Montiel
Original Article



An augmented reality system to visualize a 3D preoperative anatomical model on intra-operative patient is proposed. The hardware requirement is commercial tablet-PC equipped with a camera. Thus, no external tracking device nor artificial landmarks on the patient are required.


We resort to visual SLAM to provide markerless real-time tablet-PC camera location with respect to the patient. The preoperative model is registered with respect to the patient through 4–6 anchor points. The anchors correspond to anatomical references selected on the tablet-PC screen at the beginning of the procedure.


Accurate and real-time preoperative model alignment (approximately 5-mm mean FRE and TRE) was achieved, even when anchors were not visible in the current field of view. The system has been experimentally validated on human volunteers, in vivo pigs and a phantom.


The proposed system can be smoothly integrated into the surgical workflow because it: (1) operates in real time, (2) requires minimal additional hardware only a tablet-PC with camera, (3) is robust to occlusion, (4) requires minimal interaction from the medical staff.


Augmented reality Visual SLAM Registration Operating room Surface meshes 



This work is supported by the Direccíon General de Investigacíon Centífica y Técnica of Spain under Project RT-SLAM DPI2015-67275-P.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Additionally, all applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

Supplementary material 1 (avi 181424 KB)


  1. 1.
    Hallet J, Soler L, Diana M, Mutter D, Baumert TF, Habersetzer F, Marescaux J, Pessaux P (2015) Trans-thoracic minimally invasive liverresection guided by augmented reality. J AmColl Surgeons 220(5):e55e60Google Scholar
  2. 2.
    Kilgus T, Heim E, Haase S, Prufer S, Muller M, Seitel A, Fangerau M, Wiebe T, Iszatt J, Schlemmer HP, Hornegger J, Yen K, Maier-Hein L (2015) Mobile markerless augmented reality and its application in forensic medicine. IJCARS 10(5):573–586Google Scholar
  3. 3.
    dos Santos T, Seitel A, Kilgus T, Suwelack S, Wekerle AL, Kenngott H, Speidel S, Schlemmer HP, Meinzer HP, Heimann T, Maier-Hein L (2014) Pose-independent surface matching for intra-operative soft-tissue marker-less registration. Med Image Anal 18(7):1101–1114CrossRefPubMedGoogle Scholar
  4. 4.
    Macedo M, Souza A, Giraldi G (2014) High-quality on-patient medical data visualization in a markerless augmented reality environment. SBC J Interact Syst 5(3):41–52Google Scholar
  5. 5.
    Lee J, Huang C, Huang T, Hsieh H, Lee S (2012) Medical augment reality using a markerless registration framework. Int J Expert Syst Appl 39(5):5286–5294CrossRefGoogle Scholar
  6. 6.
    Chen X, Xu L, Wang Y, Wang H, Wang F, Zeng X, Wangb Q, Egger J (2015) Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display. J Biomed Inform 55:124–131CrossRefPubMedGoogle Scholar
  7. 7.
    Rassweiler JJ, Müller M, Fangerau M, Klein J, Goezen AS, Pereirac P, Meinzerb HP, Teberd D (2012) iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience. Eur Urol 61(3):628–631CrossRefPubMedGoogle Scholar
  8. 8.
    Muller M, Rassweiler M, Klein J, Seitel A, Gondan M, Baumhauer M, Teber G, Rassweiler JJ, Meinzer HP, Maier-Hein L (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. IJCARS 8(4):663–675Google Scholar
  9. 9.
    Sun Y, Luebbers H, Agbaje J, Schepers S, Vrielinck L, Lambrichts I, Politis C (2013) Validation of anatomical landmarks-based registration for image-guided surgery: an in-vitro study. J Cranio Maxill Surg 41(6):522–526CrossRefGoogle Scholar
  10. 10.
    Schneider A, Baumberger C, Griessen M, Pezold S, Beinemann J, Philipp Jurgens P, Cattin PC (2014) Landmark-based surgical navigation. Clinical image-based procedures. Transl Res Med Imaging 8361:57–64Google Scholar
  11. 11.
    Davison AJ (2003) Real-time simultaneous localisation and mapping with a single camera. IEEE Int Conf Comput Vis 2:1403–1410Google Scholar
  12. 12.
    Civera J, Davison AJ, Montiel JMM (2008) Inverse depth parametrization for monocular SLAM. IEEE Trans Robot 24(5):932–945CrossRefGoogle Scholar
  13. 13.
    Civera J, Grasa OG, Davison AJ, Montiel JMM (2010) 1-Point RANSAC for extended Kalman filtering. Application to real time structure from motion and visual odometry. J Field Robot 27(5):609–631CrossRefGoogle Scholar
  14. 14.
    Grasa OG, Bernal E, Casado S, Gil I, Montiel JMM (2014) Visual SLAM for handheld monocular endoscope. IEEE Trans Med Imaging 33(1):135–146CrossRefPubMedGoogle Scholar
  15. 15.
    Grasa OG, Civera J, Montiel JMM (2009) EKF monocular SLAM 3D modeling. Measuring and augmented reality from endoscope image sequences. In MICCAI, vol 2Google Scholar
  16. 16.
    Klein G, Murray D (2007) Parallel tracking and mapping for small AR workspace. In: IEEE and ACM international symposium on mixed and augmented reality (ISMAR), pp 1–10Google Scholar
  17. 17.
    Mikhail EM, Bethel JS, McGlone JC (2001) Introduction to modern photogrammetry. Wiley, New YorkGoogle Scholar
  18. 18.
    Mur-Artal R, Montiel JMM, Tard JD (2015) ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans Robot 31(5):1147–1163CrossRefGoogle Scholar
  19. 19.
    Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. In: IEEE international conference on computer vision (ICCV), pp 2564–2571Google Scholar
  20. 20.
    Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of IEEE international conference on computer vision, vol 2, pp 1150–1157Google Scholar
  21. 21.
    Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: Proceedings of 9th European conference on computer vision, pp 430–443Google Scholar
  22. 22.
    Shi J, Tomasi C (1994) Good features to track. In: IEEE computer society conference in computer vision and pattern recognition, pp 593–600Google Scholar
  23. 23.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  24. 24. Accessed 4 Apr 2016
  25. 25.
    Gao X, Hou X, Tang J, Cheng H (2003) Complete solution classification for the perspective-three-point problem. IEEE Trans Pattern Anal 25(8):930–943CrossRefGoogle Scholar
  26. 26.
    Gálvez-López D, Salas M, Tard JD, Montiel JMM (2015) Real-time monocular object SLAM. J Robots Auton Syst. doi: 10.1016/j.robot.2015.08.009
  27. 27.
    Horn BK (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(4):629–642CrossRefGoogle Scholar
  28. 28.
    Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal 22(11):1330–1334CrossRefGoogle Scholar
  29. 29.

Copyright information

© CARS 2016

Authors and Affiliations

  • Nader Mahmoud
    • 1
    • 2
    Email author
  • Óscar G. Grasa
    • 1
  • Stéphane A. Nicolau
    • 1
  • Christophe Doignon
    • 2
  • Luc Soler
    • 1
  • Jacques Marescaux
    • 1
  • J. M. M. Montiel
    • 3
  1. 1.IRCAD (Institut de Recherche contre les Cancers de l’Appareil Digestif)StrasbourgFrance
  2. 2.ICube (UMR 7357 CNRS)Université de StrasbourgStrasbourgFrance
  3. 3.Instituto de Investigación en Ingeniería de Aragón (I3A)Universidad de ZaragozaSaragossaSpain

Personalised recommendations