Advertisement

A computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system for the description of hip joint kinematics

  • Rui Jia
  • Stephen Mellon
  • Paul Monk
  • David Murray
  • J. Alison Noble
Original Article

Abstract

Purpose

Investigation of joint kinematics contributes to developing a better understanding of musculoskeletal conditions. However, the most commonly used optoelectronic motion analysis systems cannot determine the movements of underlying bone landmarks with high accuracy because of soft tissue artefacts. The aim of this paper was to present a computer-aided measurement system to track the underlying bone anatomy in a 3D global coordinate frame and describe hip joint kinematics of ten healthy volunteers during gait.

Methods

We have developed a measurement tool with an image-based computer-aided post-processing pipeline for automatic bone segmentation in ultrasound (US) images and a globally optimal 3D surface-to-surface registration method to quantify hip joint movements. The segmentation algorithm exploits US intensity profiles, including information about the integrated backscattering, acoustic shadows, and local phase features. A global optimization method is applied based on the traditional iterative closest point registration algorithm, which is robust to initialization. The International Society of Biomechanics recommended joint kinematics descriptor has been adapted to calculate the joint kinematics.

Results

The developed system prototype has been validated with a ball-joint femoral phantom and tested in vivo with 10 volunteers. The maximum Euclidean distance error of the automatic bone segmentation is less than 2 pixels (approximately 0.2 mm). The maximum absolute rotation angle error is less than \(4^{\circ }\).

Conclusion

This computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system shows the feasibility of describing hip joint kinematics for clinical investigation and diagnosis using an image-based solution.

Keywords

Bone ultrasound Segmentation Registration Joint kinematics 

Notes

Acknowledgments

The authors would like to thank Orthopaedics Research UK for supporting this project (Grant code: HFR00390) and the China Scholarship Council for funding Rui Jia (CSC NO.201408-060234). We sincerely thank all the participants for volunteering in the experiments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All the in vivo experiments were in accordance with the ethical standards of the institutional and/or national research committee.

References

  1. 1.
    Department of Health (2006) The musculoskeletal services framework—a joint responsibility: doing it differently. Technical reportGoogle Scholar
  2. 2.
    Powers CM (2003) The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J orthop Sports Phys Ther 33(11):639–646. doi: 10.2519/jospt.2003.33.11.639 CrossRefPubMedGoogle Scholar
  3. 3.
    Monk AP (2011) The patellofemoral joint: form and function, Ph.D. thesis, University of OxfordGoogle Scholar
  4. 4.
    Peters A, Galna B, Sangeux M, Morris M, Baker R (2010) Quantification of soft tissue artifact in lower limb human motion analysis: a systematic review. Gait Posture 31(1):1–8CrossRefPubMedGoogle Scholar
  5. 5.
    Foroughi P, Boctor E, Swartz MJ, Taylor RH, Fichtinger G (2007) Ultrasound bone segmentation using dynamic programming, in: IEEE ultrasonics symposium proceedings, pp 2523–2526. doi: 10.1109/ULTSYM.2007.635. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4410208
  6. 6.
    Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN (2009) Bone surface localization in ultrasound using image phase-based features. Ultrasound Med Biol 35(9):1475–1487. doi: 10.1016/j.ultrasmedbio.2009.04.015 CrossRefPubMedGoogle Scholar
  7. 7.
    Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN, Guy P (2012) Automatic bone localization and fracture detection from volumetric ultrasound images using 3-D local phase features. Ultrasound Med Biol 38(1):128–144. doi: 10.1016/j.ultrasmedbio.2011.10.009 CrossRefPubMedGoogle Scholar
  8. 8.
    Wein W, Karamalis A, Baumgartner A, Navab N (2015) Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery. Int J Comput Assist Radiol Surg 10(6):971–979. doi: 10.1007/s11548-015-1208-z. http://link.springer.com/10.1007/s11548-015-1208-z
  9. 9.
    Kowal J, Amstutz C, Langlotz F, Talib H, Ballester MG (2007) Automated bone contour detection in ultrasound B-mode images for minimally invasive registration in computer-assisted surgery—an in vitro evaluation. Int J Med Robot Comput Assist Surg 3(4):341–348. doi: 10.1002/rcs.160 CrossRefGoogle Scholar
  10. 10.
    Zhang Z (1994) Iterative point matching for registration of free-form curves and surfaces. Int J Comput Vis 13(2):119–152. doi: 10.1007/BF01427149. http://link.springer.com/10.1007/BF01427149
  11. 11.
    Fitzgibbon AW (2003) Robust registration of 2D and 3D point sets. Image Vis Comput 21(13–14):1145–1153. doi: 10.1016/j.imavis.2003.09.004. http://linkinghub.elsevier.com/retrieve/pii/S0262885603001835
  12. 12.
    Yang J, Li H, Jia Y (2013) Go-ICP: solving 3D registration efficiently and globally optimally. 2013 IEEE international conference on computer vision 1457–1464 doi: 10.1109/ICCV.2013.184. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6751291
  13. 13.
    Barratt DC, Penney GP, Chan CSK, Slomczykowski M, Carter TJ, Edwards PJ, Hawkes DJ (2006) Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery. IEEE Trans Med Imaging 25(3):312–323. doi: 10.1109/TMI.2005.862736 CrossRefPubMedGoogle Scholar
  14. 14.
    Monk AP, Chen M, Mellon S, Gibbons M, Beard DJ, Murray DW, Gill HS (2013) Comparison of in vivo coronal plane patella tracking following knee arthroplasty using the MAUS technique. Bone Jt J Orthop Proc Suppl 95(SUPP 26):10Google Scholar
  15. 15.
    Jia R, Mellon S, Monk P, Murray D, Noble JA (2015) Three dimensional freehand ultrasound reconstruction using hybrid interpolation. In: Medical image understanding and analysis, Lincoln, UK, pp 169–174Google Scholar
  16. 16.
    Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 49(12):3136–3144. doi: 10.1109/78.969520. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=969520
  17. 17.
    Rajpoot K, Grau V, Noble JA (2009) Local-phase based 3d boundary detection using monogenic signal and its application to real-time 3-d echocardiography images. In: Proceedings—2009 IEEE international symposium on biomedical imaging: from nano to macro, ISBI 2009, pp. 783–786. doi: 10.1109/ISBI.2009.5193166
  18. 18.
    Kovesi P (1999) Symmetry and asymmetry from local phase. In: Tenth Australian joint conference on artificial intelligence, pp 190–196Google Scholar
  19. 19.
    Jia R, Hansjee S, Monk AP, Murray DW, Mellon SJ, Noble JA (2016) Automatic bone segmentation in ultrasound images using local phase features and dynamic programming. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI)Google Scholar
  20. 20.
    Jia R, Monk AP, Murray DW, Mellon SJ, Noble JA (2015) Greater trochanter tracking in ultrasound imaging during gait. In: 2015 IEEE 12th international symposium on biomedical imaging (ISBI), IEEE, pp 260–263Google Scholar
  21. 21.
    Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics. doi: 10.1016/S0021-9290(01)00222-6
  22. 22.
    Sawbones, Biomechanical test materials (2014) www.sawbones.com
  23. 23.
  24. 24.
    Ramakrishnan H, Kadaba M (1991) On the estimation of joint kinematics during gait. J Biomech 24(10):969–977CrossRefPubMedGoogle Scholar
  25. 25.
    Billuart F, Devun GOSWL, Mitton D (2007) 3D kinematics of the glenohumeral joint during abduction motion: an ex vivo study. Surg Radiol Anat 29(4):291–295. doi: 10.1007/s00276-007-0208-2 CrossRefPubMedGoogle Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  • Rui Jia
    • 1
  • Stephen Mellon
    • 2
  • Paul Monk
    • 2
  • David Murray
    • 2
  • J. Alison Noble
    • 1
  1. 1.Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
  2. 2.Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK

Personalised recommendations