Advertisement

Registration using 3D-printed rigid templates outperforms manually scanned surface matching in image-guided temporal bone surgery

  • Makoto Yamashita
  • Nozomu MatsumotoEmail author
  • Byunghyun Cho
  • Noritaka Komune
  • Shinya Onogi
  • Jongseung Lee
  • Jordan Bano
  • Tomohiko Akahoshi
  • Makoto Hashizume
Original Article

Abstract

Purpose

Image-guided surgery (IGS) for otological procedures requires minimal invasiveness and a high degree of accuracy. We have recently developed a noninvasive registration method, the Surface Template-Assisted Marker Positioning (STAMP) method, which uses a rigid template of the surface of the temporal bone. However, the STAMP method is not applicable when the bony surface is not exposed, such as in endoscopic surgery. Thus, we extended our research to apply the STAMP method onto the skin and tested its feasibility in this study.

Methods

We designed a phantom made of a rigid box and soft material for the study. The target registration error (TRE) was measured at preset measuring points in the phantom. We modified the STAMP method to be applicable for use on the skin around the ears (S-STAMP). The same phantom was also registered using the conventional, manually scanned surface matching method. We compared the TRE after the different registration methods.

Results

The TRE after the S-STAMP registration method was significantly smaller than that of the conventional surface matching method at all error measurement points in the phantom. However, the TRE after the S-STAMP registration method was significantly larger than that of paired point registration using invasive fiducial markers.

Conclusions

The S-STAMP method using a rigid template on the soft surface yields a significantly smaller TRE than that of conventional, manually scanned surface matching registration. This strategy provides an alternative option to improve the accuracy of IGS without loading patients with additional invasive procedures.

Keywords

Image-guided surgery Otology Surgical navigation Registration Transcanal endoscopic ear surgery 

Notes

Acknowledgments

The authors thank Dr. Kazuo Tanoue and Mr. Yoshitsugu Suzuki at Ueno Hospital, Fukuoka, Japan, for helping us obtain the CT dataset of the phantom. A part of this study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 26108010 (to M.H).

Compliance with ethical standards

Conflict of interest

M.Y., B.C., N.K., S.O., J.L., J.B., T.A., and M.H.: None. N.M. is an applicant of patents related to the STAMP method, and thus, he declares this fact as a potential conflict of interest.

References

  1. 1.
    Dalgorf DM, Sacks R, Wormald PJ, Naidoo Y, Panizza B, Uren B, Brown C, Curotta J, Snidvongs K, Harvey RJ (2013) Image-guided surgery influences perioperative morbidity from endoscopic sinus surgery: a systematic review and meta-analysis. Otolaryngol Head Neck Surg 149(1):17–29. doi: 10.1177/0194599813488519 CrossRefPubMedGoogle Scholar
  2. 2.
    Metzger MC, Rafii A, Holhweg-Majert B, Pham AM, Strong B (2007) Comparison of 4 registration strategies for computer-aided maxillofacial surgery. Otolaryngol Head Neck Surg 137(1):93–99. doi: 10.1016/j.otohns.2007.02.015 CrossRefPubMedGoogle Scholar
  3. 3.
    Grayeli AB, Esquia-Medina G, Nguyen Y, Mazalaigue S, Vellin JF, Lombard B, Kalamarides M, Ferrary E, Sterkers O (2009) Use of anatomic or invasive markers in association with skin surface registration in image-guided surgery of the temporal bone. Acta Otolaryngol 129(4):405–410. doi: 10.1080/00016480802579025 CrossRefPubMedGoogle Scholar
  4. 4.
    Gerber N, Gavaghan KA, Bell BJ, Williamson TM, Weisstanner C, Caversaccio MD, Weber S (2013) High-accuracy patient-to-image registration for the facilitation of image-guided robotic microsurgery on the head. IEEE Trans Biomed Eng 60(4):960–968. doi: 10.1109/TBME.2013.2241063 CrossRefPubMedGoogle Scholar
  5. 5.
    Tarabichi M, Marchioni D, Presutti L, Nogueira JF, Pothier D (2013) Endoscopic transcanal ear anatomy and dissection. Otolaryngol Clin North Am 46(2):131–154. doi: 10.1016/j.otc.2013.02.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Tarabichi M, Ayache S, Nogueira JF, Al Qahtani M, Pothier DD (2013) Endoscopic management of chronic otitis media and tympanoplasty. Otolaryngol Clin North Am 46(2):155–163. doi: 10.1016/j.otc.2012.12.002 CrossRefPubMedGoogle Scholar
  7. 7.
    Presutti L, Nogueira JF, Alicandri-Ciufelli M, Marchioni D (2013) Beyond the middle ear: endoscopic surgical anatomy and approaches to inner ear and lateral skull base. Otolaryngol Clin North Am 46(2):189–200. doi: 10.1016/j.otc.2012.12.001 CrossRefPubMedGoogle Scholar
  8. 8.
    Kohan D, Jethanamest D (2012) Image-guided surgical navigation in otology. Laryngoscope 122(10):2291–2299. doi: 10.1002/lary.23522 CrossRefPubMedGoogle Scholar
  9. 9.
    Matsumoto N, Hong J, Hashizume M, Komune S (2009) A minimally invasive registration method using surface template-assisted marker positioning (STAMP) for image-guided otologic surgery. Otolaryngol Head Neck Surg 140(1):96–102. doi: 10.1016/j.otohns.2008.10.005 CrossRefPubMedGoogle Scholar
  10. 10.
    Matsumoto N, Oka M, Cho B, Hong J, Jinnouchi M, Ouchida R, Hashizume M, Komune S (2012) Cochlear implantation assisted by noninvasive image guidance. Otol Neurotol 33(8):1333–1338. doi: 10.1097/MAO.0b013e318268d1e9 CrossRefPubMedGoogle Scholar
  11. 11.
    Oka M, Cho B, Matsumoto N, Hong J, Jinnouchi M, Ouchida R, Komune S, Hashizume M (2014) A preregistered STAMP method for image-guided temporal bone surgery. Int J Comput Assist Radiol Surg 9(1):119–126. doi: 10.1007/s11548-013-0916-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Hong J, Hashizume M (2010) An effective point-based registration tool for surgical navigation. Surg Endosc 24(4):944–948. doi: 10.1007/s00464-009-0568-2 CrossRefPubMedGoogle Scholar
  13. 13.
    Pukelsheim F (1994) The three sigma rule. Am Stat 48(2):88–91. doi: 10.2307/2684253 Google Scholar
  14. 14.
    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. L. Erlbaum Associates, HillsdaleGoogle Scholar
  15. 15.
    Kral F, Riechelmann H, Freysinger W (2011) Navigated surgery at the lateral skull base and registration and preoperative imagery: experimental results. Arch Otolaryngol Head Neck Surg 137(2):144–150. doi: 10.1001/archoto.2010.249 CrossRefPubMedGoogle Scholar
  16. 16.
    Ledderose GJ, Hagedorn H, Spiegl K, Leunig A, Stelter K (2012) Image guided surgery of the lateral skull base: testing a new dental splint registration device. Comput Aided Surg 17(1):13–20. doi: 10.3109/10929088.2011.632783 CrossRefPubMedGoogle Scholar
  17. 17.
    Eggers G, Muhling J (2007) Template-based registration for image-guided skull base surgery. Otolaryngol Head Neck Surg 136(6):907–913. doi: 10.1016/j.otohns.2006.12.021 CrossRefPubMedGoogle Scholar
  18. 18.
    Luebbers HT, Messmer P, Obwegeser JA, Zwahlen RA, Kikinis R, Graetz KW, Matthews F (2008) Comparison of different registration methods for surgical navigation in cranio-maxillofacial surgery. J Craniomaxillofac Surg 36(2):109–116. doi: 10.1016/j.jcms.2007.09.002 CrossRefPubMedGoogle Scholar
  19. 19.
    Schicho K, Figl M, Seemann R, Donat M, Pretterklieber ML, Birkfellner W, Reichwein A, Wanschitz F, Kainberger F, Bergmann H, Wagner A, Ewers R (2007) Comparison of laser surface scanning and fiducial marker-based registration in frameless stereotaxy. Technical note. J Neurosurg 106(4):704–709. doi: 10.3171/jns.2007.106.4.704 CrossRefPubMedGoogle Scholar
  20. 20.
    Hoffmann J, Westendorff C, Leitner C, Bartz D, Reinert S (2005) Validation of 3D-laser surface registration for image-guided cranio-maxillofacial surgery. J Craniomaxillofac Surg 33(1):13–18. doi: 10.1016/j.jcms.2004.10.001 CrossRefPubMedGoogle Scholar
  21. 21.
    Ledderose GJ, Stelter K, Leunig A, Hagedorn H (2007) Surface laser registration in ENT-surgery: accuracy in the paranasal sinuses-a cadaveric study. Rhinology 45(4):281–285PubMedGoogle Scholar
  22. 22.
    Raabe A, Krishnan R, Wolff R, Hermann E, Zimmermann M, Seifert V (2002) Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery 50(4):797–801 (discussion 802-793)CrossRefPubMedGoogle Scholar
  23. 23.
    Zwickl A, Leunig A, Tanner P, Rasp G, Hagedorn H (2003) Conference paper: Initial experiences with Brainlab’s Kolibri navigation system with z-touch and Soft-touch registration. Paper presented at the 2. Jahrestagung der Computer- und Roboterassistierte Chirurgie (CURAC), Nürnberg, Germany, Nov 4–7Google Scholar
  24. 24.
    Arapakis I, Hubbe U, Maier W, Laszig R, Schipper J (2005) LED autoregistration in navigated endonasal sinus surgery. Laryngorhinootologie 84(6):418–425. doi: 10.1055/s-2004-825998 CrossRefPubMedGoogle Scholar
  25. 25.
    Shah UK, Daniero JJ, Clary MS, Depietro JJ, Johnston DR (2011) Low birth weight neonatal choanal atresia repair using image guidance. Int J Pediatr Otorhinolaryngol 75(10):1337–1340. doi: 10.1016/j.ijporl.2011.07.011 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang W, Wang C, Shen G, Wang X, Cai M, Gui H, Liu Y, Yang D (2012) A novel device for preoperative registration and automatic tracking in cranio-maxillofacial image guided surgery. Comput Aided Surg 17(5):259–267. doi: 10.3109/10929088.2012.710251 CrossRefPubMedGoogle Scholar
  27. 27.
    Hofer M, Dittrich E, Baumberger C, Strauss M, Dietz A, Luth T, Strauss G (2010) The influence of various registration procedures upon surgical accuracy during navigated controlled petrous bone surgery. Otolaryngol Head Neck Surg 143(2):258–262. doi: 10.1016/j.otohns.2010.04.021 CrossRefPubMedGoogle Scholar
  28. 28.
    Eggers G, Muhling J, Marmulla R (2005) Template-based registration for image-guided maxillofacial surgery. J Oral Maxillofac Surg 63(9):1330–1336. doi: 10.1016/j.joms.2005.05.312 CrossRefPubMedGoogle Scholar
  29. 29.
    West JB, Fitzpatrick JM, Toms SA, Maurer CR Jr, Maciunas RJ (2001) Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery 48(4):810–816 (discussion 816-817)PubMedGoogle Scholar
  30. 30.
    Cho B, Matsumoto N, Komune S, Hashizume M (2014) A surgical navigation system for guiding exact cochleostomy using auditory feedback: a clinical feasibility study. Biomed Res Int 2014:769659. doi: 10.1155/2014/769659 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Grauvogel TD, Grauvogel J, Arndt S, Berlis A, Maier W (2012) Is there an equivalence of non-invasive to invasive referenciation in computer-aided surgery? Eur Arch Otorhinolaryngol 269(10):2285–2290. doi: 10.1007/s00405-012-2023-6 CrossRefPubMedGoogle Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  1. 1.Department of Advanced Medical Initiatives, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Otorhinolaryngology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  3. 3.Center for Advanced Medical InnovationKyushu UniversityFukuokaJapan

Personalised recommendations