Online model checking for monitoring surrogate-based respiratory motion tracking in radiation therapy

  • Sven-Thomas Antoni
  • Jonas Rinast
  • Xintao Ma
  • Sibylle Schupp
  • Alexander Schlaefer
Original Article

Abstract

Objective

Correlation between internal and external motion is critical for respiratory motion compensation in radiosurgery. Artifacts like coughing, sneezing or yawning or changes in the breathing pattern can lead to misalignment between beam and tumor and need to be detected to interrupt the treatment. We propose online model checking (OMC), a model-based verification approach from the field of formal methods, to verify that the breathing motion is regular and the correlation holds. We demonstrate that OMC may be more suitable for artifact detection than the prediction error.

Materials and methods

We established a sinusoidal model to apply OMC to the verification of respiratory motion. The method was parameterized to detect deviations from typical breathing motion. We analyzed the performance on synthetic data and on clinical episodes showing large correlation error. In comparison, we considered the prediction error of different state-of-the-art methods based on least mean squares (LMS; normalized LMS, nLMS; wavelet-based multiscale autoregression, wLMS), recursive least squares (RLSpred) and support vector regression (SVRpred).

Results

On synthetic data, OMC outperformed wLMS by at least 30 % and SVRpred by at least 141 %, detecting 70 % of transitions. No artifacts were detected by nLMS and RLSpred. On patient data, OMC detected 23–49 % of the episodes correctly, outperforming nLMS, wLMS, RLSpred and SVRpred by up to 544, 491, 408 and 258 %, respectively. On selected episodes, OMC detected up to 94 % of all events.

Conclusion

OMC is able to detect changes in breathing as well as artifacts which previously would have gone undetected, outperforming prediction error-based detection. Synthetic data analysis supports the assumption that prediction is very insensitive to specific changes in breathing. We suggest using OMC as an additional safety measure ensuring reliable and fast stopping of irradiation.

Keywords

Respiration Radiosurgery Prediction Model checking Internal–external correlation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Schweikard A, Glosser G, Bodduluri M, Murphy M, Adler J (2000) Robotic motion compensation for respiratory movement during radiosurgery. Comput Aided Surg 5(4):263–277CrossRefPubMedGoogle Scholar
  2. 2.
    Schweikard A, Shiomi H, Adler J (2004) Respiration tracking in radiosurgery. Med Phys 31(10):2738–2741CrossRefPubMedGoogle Scholar
  3. 3.
    Seppenwoolde Y, Berbeco RI, Nishioka S, Shirato H, Heijmen B (2007) Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys 34(7):2774–2784CrossRefPubMedGoogle Scholar
  4. 4.
    Depuydt T, Haas OC, Verellen D, Erbel S, De Ridder M, Storme G (2010) Geometric accuracy evaluation of the new VERO stereotactic body radiation therapy system. In: UKACC international conference on control 2010, pp 1–6, IET. doi:10.1049/ic.2010.0291
  5. 5.
    Murphy MJ, Isaakson M, Jalden J (2002) Adaptive filtering to predict lung tumor motion during free breathing. In: CARS 2002 computer assisted radiology and surgery. Springer, Berlin, pp 539–544Google Scholar
  6. 6.
    Ernst F, Schlaefer A, Schweikard A (2007) Prediction of respiratory motion with wavelet-based multiscale autoregression. Med Image Comput Comput Assist Interv—MICCAI 2007. In: 10th international conference on medical image computing and computer assisted intervention, vol 10, pp 668–675Google Scholar
  7. 7.
    Ernst F, Schweikard A (2008) Prediction of respiratory motion using a modified recursive least squares algorithm. In: CURAC 2008-Tagungsband, pp 157–160Google Scholar
  8. 8.
    Ernst F, Dürichen R, Schlaefer A, Schweikard A (2013) Evaluating and comparing algorithms for respiratory motion prediction. Phys Med Biol 58(11):3911–3929. doi:10.1088/0031-9155/58/11/3911 CrossRefPubMedGoogle Scholar
  9. 9.
    Ernst F, Schweikard A (2009) Forecasting respiratory motion with accurate online support vector regression (SVRpred). Int J Comput Assist Radiol Surg 4(5):439–447CrossRefPubMedGoogle Scholar
  10. 10.
    Dürichen R, Wissel T, Ernst F, Schweikard A (2013) Respiratory motion compensation with relevance vector machines. In: Medical image computing and computer-assisted intervention–MICCAI 2013. Springer, Berlin, pp 108–115Google Scholar
  11. 11.
    Murphy M, Pokhrel D (2009) Optimization of an adaptive neural network to predict breathing. Med Phys 36(1):40–47CrossRefPubMedGoogle Scholar
  12. 12.
    Ramrath L, Schlaefer A, Ernst F, Dieterich S, Schweikard A (2007) Prediction of respiratory motion with a multi-frequency based extended kalman filter. In: Proceedings of the 21st international conference and exhibition on computer assisted radiology and surgery (CARS07), vol 21Google Scholar
  13. 13.
    Dürichen R, Wissel T, Ernst F, Schlaefer A, Schweikard A (2014) Multivariate respiratory motion prediction. Phys Med Biol 59(20):6043CrossRefPubMedGoogle Scholar
  14. 14.
    Schweikard A, Shiomi H, Adler J (2005) Respiration tracking in radiosurgery without fiducials. Int J Med Robot 1(2):19–27CrossRefPubMedGoogle Scholar
  15. 15.
    Alur R, Dill D (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235CrossRefGoogle Scholar
  16. 16.
    David A, Du D, Larsen KG, Legay A, Mikučionis M, Bøgsted Poulsen D, Sedwards S (2012) Statistical model checking for stochastic hybrid systems. In: Proceedings first international workshop on hybrid systems and biology, Newcastle Upon Tyne, 3rd September 2012, Electronic proceedings in theoretical computer science, vol 92. Open Publishing Association, pp 122–136Google Scholar
  17. 17.
    Bengtsson J (2002) Clocks, DBMs and states in timed systems. Ph.D. thesis, Uppsala UniversityGoogle Scholar
  18. 18.
    Legay A, Delahaye B, Bensalem S (2010) Statistical model checking: an overview. In: Barringer H, Falcone Y, Finkbeiner B, Havelund K, Lee I, Pace G, Rou G, Sokolsky O, Tillmann N (eds) Runtime verification, vol 6418. Lecture Notes in Computer Science, Springer, Berlin, pp 122–135Google Scholar
  19. 19.
    Behrmann G, David A, Larsen KG (2006) A tutorial on Uppaal 4.0. In: Bernardo M, Corradini F (eds) Formal methods for the design of real-time systems, vol 3185. Lecture Notes in Computer Science, Springer, Berlin, pp 1–48. Updated version of the original paper from 2004Google Scholar
  20. 20.
    Bulychev P, David A, Larsen KG, Mikučionis M, Bøgsted Poulsen D, Legay A, Wang Z (2012) UPPAAL-SMC: statistical model checking for priced timed automata. In: Wiklicky H, Massink M (eds) 10th workshop on quantitative aspects of programming languages and systems (QAPL 2012), electronic proceedings in theoretical computer science, vol 85. Open Publishing Association, pp 1–16Google Scholar
  21. 21.
    Bengtsson J, Yi W (2004) Timed automata: semantics, algorithms and tools. In: Desel J, Reisig W, Rozenberg G (eds) Lectures on concurrency and petri nets, vol 3098. Lecture Notes in Computer Science, Springer, Berlin, pp 87–124Google Scholar
  22. 22.
    Li T, Tan F, Wang Q, Bu L, Cao JN, Liu X (2012) From offline toward real-time: a hybrid systems model checking and CPS Co-design approach for medical device plug-and-play (MDPnP). In: 2012 IEEE/ACM third international conference on cyber-physical systems. IEEE, pp 13–22Google Scholar
  23. 23.
    Antoni S, Rinast J, Schupp S, Schlaefer A (2015) Comparing model-free motion prediction and on-line model checking for respiratory motion management. In: Gemeinsamer Tagungsband der Workshops der Tagung Software Engineering 2015, Dresden, Germany, 17.–18. März 2015, pp 15–18Google Scholar
  24. 24.
    Antoni ST, Rinast J, Schupp S, Schlaefer A (2015) Evaluation des Einflusses von Artefakten auf den Korrelationsfehler in der bewegungskompensierten Radiochirurgie. In: CURAC 2015 - Tagungsband. Bremen, Germany, pp 133–138Google Scholar
  25. 25.
    Krilavicius T, Wan K, Lee K, Man KL (2012) Specification and verification of radiation therapy system with respiratory compensation using uppaal. Int J Des Anal Tools Integr Circ Syst 3(1):8–13Google Scholar
  26. 26.
    Rzezovski N, Ernst F (2008) Graphical tool for the prediction of respiratory motion signals. In: CURAC 2008 - Tagungsband, pp 179–180Google Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  • Sven-Thomas Antoni
    • 1
  • Jonas Rinast
    • 2
  • Xintao Ma
    • 2
  • Sibylle Schupp
    • 2
  • Alexander Schlaefer
    • 1
  1. 1.Institute of Medical TechnologyHamburg University of TechnologyHamburgGermany
  2. 2.Institute for Software SystemsHamburg University of TechnologyHamburgGermany

Personalised recommendations