A versatile intensity-based 3D/2D rigid registration compatible with mobile C-arm for endovascular treatment of abdominal aortic aneurysm

  • A. DuménilEmail author
  • A. Kaladji
  • M. Castro
  • C. Göksu
  • A. Lucas
  • P. Haigron
Original Article



Augmented reality-assisted surgery requires prior registration between preoperative and intraoperative data. In the context of the endovascular aneurysm repair (EVAR) of abdominal aortic aneurysm, no satisfactory solution exists at present for clinical use, in particular in the case of use with a mobile C-arm. The difficulties stem in particular from the diversity of intraoperative images, table movements and changes of C-arm pose.


We propose a fast and versatile 3D/2D registration method compatible with mobile C-arm that can be easily repeated during an EVAR procedure. Applicable to both vascular and bone structures, our approach is based on an optimization by reduced exhaustive search involving a multi-resolution scheme and a decomposition of the transformation to reduce calculation time.


Registration was performed between the preoperative CT-scan and fluoroscopic images for a group of 26 patients in order to confront our method in real conditions of use. The evaluation was completed by also performing registration between an intraoperative CBCT volume and fluoroscopic images for a group of 6 patients to compare registration results with reference transformations. The experimental results show that our approach allows obtaining accuracy of the order of 0.5 mm, a computation time of \({<}17\,\hbox {s}\) and a higher rate of success in comparison with a classical optimization method. When integrated in an augmented reality navigation system, our approach shows that it is compatible with clinical workflow.


We presented a versatile 3D/2D rigid registration applicable to all intraoperative scenes and usable to guide an EVAR procedure by augmented reality.


Endovascular aneurysm repair 3D/2D registration Augmented reality Computer-assisted surgery 



This work has been partially conducted in the experimental platform TherA-Image (Rennes, France) supported by Europe FEDER. This work has been partially supported by the French National Research Agency (ANR) in the context of the Endosim project (Grant No. ANR-13-TECS-0012) and within the Investissements d’Avenir program (Labex CAMI) under reference ANR-11-LABX-0004.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Informed consent

Additional informed consent was obtained from all individual participants for whom identifying information is included in this article


  1. 1.
    United Kingdom EVAR Trial Investigators, Greenhalgh RM, Brown LC, Powell JT, Thompson SG, Epstein D, Sculpher MJ (2010) Endovascular versus open repair of abdominal aortic aneurysm. N Engl J Med 362(20):1863–1871Google Scholar
  2. 2.
    Kersten-Oertel M, Jannin P, Collins DL (2013) The state of the art of visualization in mixed reality image guided surgery. Comput Med Imaging Graph Off J Comput Med Imaging Soc 37(2):98–112CrossRefGoogle Scholar
  3. 3.
    Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 16(3):642–661PubMedCrossRefGoogle Scholar
  4. 4.
    Liao R, Zhang L, Sun Y, Miao S, Chefd’hotel C (2013) A review of recent advances in registration techniques applied to minimally invasive therapy. IEEE Trans Multimed 15(5):983–1000CrossRefGoogle Scholar
  5. 5.
    Kaladji A, Dumenil A, Castro M, Haigron P, Heautot J-F, Haulon S (2013) Endovascular aortic repair of a postdissecting thoracoabdominal aneurysm using intraoperative fusion imaging. J Vasc Surg 57(4):1109–1112PubMedCrossRefGoogle Scholar
  6. 6.
    Sailer AM, de Haan MW, Peppelenbosch AG, Jacobs MJ, Wildberger JE, Schurink GWH (2014) CTA with fluoroscopy image fusion guidance in endovascular complex aortic aneurysm repair. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 47(4):349–356CrossRefGoogle Scholar
  7. 7.
    Hertault A, Maurel B, Sobocinski J, Gonzalez TM, Roux ML, Azzaoui R, Midulla M, Haulon S (2014) Impact of Hybrid Rooms with Image Fusion on Radiation Exposure during Endovascular Aortic Repair. Eur J Vasc Endovasc Surg 48(4):382–390Google Scholar
  8. 8.
    Tacher V, Lin M, Desgranges P, Deux J-F, Grünhagen T, Becquemin J-P, Luciani A, Rahmouni A, Kobeiter H (2013) Image guidance for endovascular repair of complex aortic aneurysms: comparison of two-dimensional and three-dimensional angiography and image fusion. J Vasc Interv Radiol 24(11):1698–1706PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    McNally MM, Scali ST, Feezor RJ, Neal D, Huber TS, Beck AW (2014) Three-dimensional fusion computed tomography decreases radiation exposure, procedure time, and contrast use during fenestrated endovascular aortic repair. J Vasc Surg 61(2):309–316PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Goksu C, Haigron P, Acosta O, Lucas A (2004) Endovascular navigation based on real/virtual environments cooperation for computer-assisted TEAM procedures. In: Proceedings of SPIE 5367, Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display, pp 257–266Google Scholar
  11. 11.
    Penney G, Varnavas A, Dastur N, Carrell T (2011) An image-guided surgery system to aid endovascular treatment of complex aortic aneurysms: description and initial clinical experience. In: Taylor RH, Yang G-Z (eds) Information processing in computer-assisted interventions. Springer, Berlin, pp 13–24CrossRefGoogle Scholar
  12. 12.
    Guyot A, Varnavas A, Carrell T, Penney G (2013) Non-rigid 2D–3D registration using anisotropic error ellipsoids to account for projection uncertainties during aortic surgery. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 16(Pt 3):179–186Google Scholar
  13. 13.
    Duménil A, Kaladji A, Castro M, Esneault S, Lucas A, Rochette M, Göksu C, Haigron P (2013) Finite-element-based matching of pre- and intraoperative data for image-guided endovascular aneurysm repair. IEEE Trans Biomed Eng 60(5):1353–1362PubMedCrossRefGoogle Scholar
  14. 14.
    Miao S, Liao R, Pfister M (2013) Toward smart utilization of two X-ray images for 2-D/3-D registration applied to abdominal aortic aneurysm interventions. Comput Electr Eng 39(5):1485–1498CrossRefGoogle Scholar
  15. 15.
    Benameur S, Mignotte M, Parent S, Labelle H, Skalli W, de Guise J (2003) 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Comput Med Imaging Graph Off J Comput Med Imaging Soc 27(5):321–337CrossRefGoogle Scholar
  16. 16.
    Sundar H, Khamene A, Xu C, Sauer F, Davatzikos C (2006) A novel 2D-3D registration algorithm for aligning fluoro images with 3D Pre-op CT/MR images. In: Proceedings of SPIE 6141, Medical Imaging 2006: Visualization, Image-Guided Procedures, and Display, 61412KGoogle Scholar
  17. 17.
    Imamura H, Ida N, Sugimoto N, Eiho S, Urayama S, Ueno K, Inoue K (2002) Registration of preoperative CTA and intraoperative fluoroscopic images for assisting aortic stent grafting. In: Dohi T, Kikinis R (eds) Med Image Comput Comput Assist Interv—MICCAI 2002. Springer, Berlin, pp 477–484Google Scholar
  18. 18.
    Khamene A, Bloch P, Wein W, Svatos M, Sauer F (2006) Automatic registration of portal images and volumetric CT for patient positioning in radiation therapy. Med Image Anal 10(1):96–112PubMedCrossRefGoogle Scholar
  19. 19.
    Gong RH, Stewart AJ, Abolmaesumi P (2006) A new method for CT to fluoroscope registration based on unscented Kalman filter. Med Image Comput Comput Assist Interv 9(Pt 1):891–898PubMedGoogle Scholar
  20. 20.
    Dey J, Napel S (2006) Targeted 2D/3D registration using ray normalization and a hybrid optimizer. Med Phys 33(12):4730–4738PubMedCrossRefGoogle Scholar
  21. 21.
    van der Bom IMJ, Klein S, Staring M, Homan R, Bartels LW, Pluim JPW (2011) Evaluation of optimization methods for intensity-based 2D–3D registration in X-ray guided interventions. In: Proceedings of SPIE 7962, Medical Imaging 2011: Image Processing, 796223Google Scholar
  22. 22.
    Orchard J (2007) Efficient least squares multimodal registration with a globally exhaustive alignment search. IEEE Trans Image Process Publ IEEE Signal Process Soc 16(10):2526–2534CrossRefGoogle Scholar
  23. 23.
    Russakoff DB, Rohlfing T, Adler JR, Maurer CR (2005) Intensity-based 2D–3D spine image registration incorporating a single fiducial marker. Acad Radiol 12(1):37–50PubMedCrossRefGoogle Scholar
  24. 24.
    Rohlfing T, Russakoff DB, Denzler J, Mori K, Maurer CR (2005) Progressive attenuation fields: fast 2D–3D image registration without precomputation. Med Phys 32(9):2870–2880PubMedCrossRefGoogle Scholar
  25. 25.
    Kubias A, Deinzer F, Feldmann T, Paulus D, Schreiber B, Brunner T (2008) 2D/3D image registration on the GPU. Pattern Recognit Image Anal 18(3):381–389CrossRefGoogle Scholar
  26. 26.
    Dorgham OM, Laycock SD, Fisher MH (2012) GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration. IEEE Trans Biomed Eng 59(9):2594–2603PubMedCrossRefGoogle Scholar
  27. 27.
    Sarrut D, Clippe S (2001) Geometrical transformation approximation for 2D/3D intensity-based registration of portal images and CT scan. In: Niessen WJ, Viergever MA (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001. Springer Berlin Heidelberg, pp 532–540Google Scholar
  28. 28.
    Clippe S, Sarrut D, Malet C, Miguet S, Ginestet C, Carrie C (2003) Patient setup error measurement using 3D intensity-based image registration techniques. Int J Radiat Oncol Biol Phys 56(1):259–265Google Scholar
  29. 29.
    Fu D, Kuduvalli G (2008) A fast, accurate, and automatic 2D–3D image registration for image-guided cranial radiosurgery. Med Phys 35(5):2180–2194PubMedCrossRefGoogle Scholar
  30. 30.
    Kubias A, Deinzer F, Feldmann T, Paulus D (2007) Extended global optimization strategy for rigid 2D/3D image registration. In: Kropatsch WG, Kampel M, Hanbury A (eds) Computer analysis of images and patterns. Springer, Berlin, pp 759–767CrossRefGoogle Scholar
  31. 31.
    Haque MN, Pickering MR, Al Muhit A, Frater MR, Scarvell JM, Smith PN (2014) A fast and robust technique for 3D–2D registration of CT to single plane X-ray fluoroscopy. Comput Methods Biomech Biomed Eng Imaging Vis 2(2):76–89Google Scholar
  32. 32.
    Chen H, Varshney PK (2000) A pyramid approach for multimodality image registration based on mutual information. In: Proceedings of the third international conference on Information Fusion, 2000, vol 1. FUSION 2000, pp MOD3-9–MOD3-15Google Scholar
  33. 33.
    Penney GP, Weese J, Little JA, Desmedt P, Hill DL, Hawkes DJ (1998) A comparison of similarity measures for use in 2-D–3-D medical image registration. IEEE Trans Med Imaging 17(4):586–595Google Scholar
  34. 34.
    Skerl D, Likar B, Pernus F (2006) A protocol for evaluation of similarity measures for rigid registration. IEEE Trans Med Imaging 25(6):779–791PubMedCrossRefGoogle Scholar
  35. 35.
    van der Bom MJ, Bartels LW, Gounis MJ, Homan R, Timmer J, Viergever MA, Pluim JPW (2010) Robust initialization of 2D–3D image registration using the projection-slice theorem and phase correlation. Med Phys 37(4):1884–1892PubMedCrossRefGoogle Scholar
  36. 36.
    Miao S, Lucas J, Liao R (2012) Automatic pose initialization for accurate 2D/3D registration applied to abdominal aortic aneurysm endovascular repair. In: Proceedings of SPIE 8316, Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling, 83160QGoogle Scholar
  37. 37.
    Łubniewski PJ, Sarry L, Miguel B, Lohou C (2013) 3D/2D image registration by image transformation descriptors (ITDs) for thoracic aorta imaging. In: Proceedings of SPIE 8650, Three-Dimensional Image Processing (3DIP) and Applications 2013, 86500TGoogle Scholar
  38. 38.
    Varnavas A, Carrell T, Penney G (2013) Increasing the automation of a 2D–3D registration system. IEEE Trans Med Imaging 32(2):387–399PubMedCrossRefGoogle Scholar
  39. 39.
    Vermandel M, Betrouni N, Gauvrit J-Y, Pasquier D, Vasseur C, Rousseau J (2006) Intrinsic 2D/3D registration based on a hybrid approach: use in the radiosurgical imaging process. Cell Mol Biol (Noisy-le-Grand, France) 52(6):44–53Google Scholar
  40. 40.
    Kaladji A, Lucas A, Kervio G, Haigron P, Cardon A (2010) Sizing for endovascular aneurysm repair: clinical evaluation of a new automated three-dimensional software. Ann Vasc Surg 24(7):912–920Google Scholar
  41. 41.
    Kim K, Park S, Hong H, Shin YG (2005) Fast 2D-3D registration using GPU-based preprocessing. In: Proceedings of 7th international workshop on Enterprise networking and Computing in Healthcare Industry, 2005. HEALTHCOM 2005, pp 139–143Google Scholar
  42. 42.
    Kim J, Li S, Pradhan D, Hammoud R, Chen Q, Yin F-F, Zhao Y, Kim JH, Movsas B (2007) Comparison of similarity measures for rigid-body CT/Dual X-ray image registrations. Technol Cancer Res Treat 6(4):337–346Google Scholar
  43. 43.
    Pluim JP, Maintz JB, Viergever MA (2000) Image registration by maximization of combined mutual information and gradient information. IEEE Trans Med Imaging 19(8):809–814PubMedCrossRefGoogle Scholar
  44. 44.
    Miao S, Liao R, Pfister M, Zhang L, Ordy V (2013) System and method for 3-D/3-D registration between non-contrast-enhanced CBCT and contrast-enhanced CT for abdominal aortic aneurysm stenting. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds) Medical image computing and computer-assisted intervention—MICCAI 2013. Springer, Berlin, pp 380–387CrossRefGoogle Scholar
  45. 45.
    Huynh T, Miao S, Liao R (2014) Model-to-volume registration for endovascular aneurysm repair. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). pp 405–408Google Scholar
  46. 46.
    Demirci S, Baust M, Kutter O, Manstad-Hulaas F, Eckstein H-H, Navab N (2013) Disocclusion-based 2D–3D registration for aortic interventions. Comput Biol Med 43(4):312–322PubMedCrossRefGoogle Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  • A. Duménil
    • 1
    • 2
    • 3
    Email author
  • A. Kaladji
    • 1
    • 2
    • 4
    • 5
  • M. Castro
    • 1
    • 2
    • 5
  • C. Göksu
    • 3
  • A. Lucas
    • 1
    • 2
    • 4
    • 5
  • P. Haigron
    • 1
    • 2
  1. 1.INSERM, U1099RennesFrance
  2. 2.LTSIUniversity of Rennes 1RennesFrance
  3. 3.TherenvaRennesFrance
  4. 4.Department of Cardiothoracic and Vascular SurgeryUniversity Hospital of RennesRennesFrance
  5. 5.CIC-IT 804RennesFrance

Personalised recommendations