Alignment of the lower extremity mechanical axis by computer-aided design and application in total knee arthroplasty

  • Yuan Z. ZhangEmail author
  • Sheng Lu
  • Hui Q. Zhang
  • Zhong M. Jin
  • Jian M. Zhao
  • Jian Huang
  • Zhi F. Zhang
Original Article



The success of total knee arthroplasty (TKA) depends on many factors. The position of a prosthesis is vitally important. The purpose of the present study was to evaluate the value of a computer-aided establishing lower extremity mechanical axis in TKA using digital technology.


A total of 36 cases of patients with TKA were randomly divided into the computer-aided design of navigation template group (NT) and conventional intramedullary positioning group (CIP). Three-dimensional (3D) CT scanning images of the hip, knee, and ankle were obtained in NT group. X-ray images and CT scans were transferred into the 3D reconstruction software. A 3D bone model of the hip, knee, ankle, as well as the modified loading, was reconstructed and saved in a stereolithographic format. In the 3D reconstruction model, the mechanical axis of the lower limb was determined, and the navigational templates produced an accurate model using a rapid prototyping technique. The THA in CIP group was performed according to a routine operation. CT scans were performed postoperatively to evaluate the accuracy of the two TKA methods.


The averaged operative time of the NT group procedures was \(46.8\pm 9.1\) min shorter than those of the conventional procedures (\(57.5\pm 12.3\)  min). The coronal femoral angle, coronal tibial angle, posterior tibial slope were \(89.4^{\circ }\pm 1.5^{\circ }\), \(89.3^{\circ }\pm 1.4^{\circ }\), \(6.8^{\circ }\pm 1.6^{\circ }\) in NT group and \(87.3^{\circ }\pm 3.8^{\circ }\), \(88.1^{\circ }\pm 1.9^{\circ }\), \(10.9^{\circ }\pm 4.6^{\circ }\) in CIP group, respectively. Statistically significant group differences were found.


The navigation template produced through mechanical axis of lower extremity may provide a relative accurate and simple method for TKA.


Imaging Three-dimensional Anatomic Knee 



This work was supported by National Natural Science Foundation of China (Grant No. 81160229) and Nature Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2014MS0851).

Compliance with ethical standards

Conflict of interest

The authors report no declarations of interest.


  1. 1.
    Tingart M, Lüring C, Bäthis H, Beckmann J, Grifka J, Perlick L (2008) Computer-assisted total knee arthroplasty versus the conventional technique: How precise is navigation in clinical routine? Knee Surg Sports Traumatol Arthrosc 16:44–50CrossRefPubMedGoogle Scholar
  2. 2.
    Blakeney WG, Khan RJ, Wall SJ (2011) Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am 93:1377–1384. doi: 10.2106/JBJS.I.01321 CrossRefPubMedGoogle Scholar
  3. 3.
    Nagamine R, Miura H, Bravo CV, Urabe K, Matsuda S, Miyanishi K, Hirata G, Iwamoto Y (2000) Anatomic variations should be considered in total knee arthroplasty. J Orthop Sci 5:232–237. doi: 10.1007/s007760050157 CrossRefPubMedGoogle Scholar
  4. 4.
    Ritter MA, Berend ME, Meding JB, Keating EM, Faris PM, Crites BM (2001) Long-term followup of anatomic graduated components posterior cruciate-retaining total knee replacement. Clin Orthop Relat Res 388:51–57CrossRefPubMedGoogle Scholar
  5. 5.
    Bäthis H, Perlick L, Tingart M, Perlick C, Lüring C, Grifka J (2005) Intraoperative cutting errors in total knee arthroplasty. Arch Orthop Trauma Surg 125:16–20. doi: 10.1007/s00402-004-0759-1 CrossRefPubMedGoogle Scholar
  6. 6.
    Chauhan SK, Scott RG, Breidahl W, Beaver RJ (2004) Computer-assisted knee arthroplasty versus a conventional jig-based technique. A randomized, prospective trial. J Bone Joint Surg Br 86:372–377. doi: 10.1302/0301-620X.86B3.14643 CrossRefPubMedGoogle Scholar
  7. 7.
    McPherson EJ, Patzakis MJ, Gross JE, Holtom PD, Song M, Dorr LD (1997) Infected total knee arthroplasty. Two-stage reimplantation with a gastrocnemius rotational flap. Clin Orthop Relat Res 341:73–81CrossRefPubMedGoogle Scholar
  8. 8.
    Bäthis H, Perlick L, Tingart M, Lüring C, Zurakowski D, Grifka J (2004) Alignment in total knee arthroplasty. A comparison of computer-assisted surgery with the conventional technique. J Bone Joint Surg Br 86:682–687. doi: 10.1302/0301-620X.86B5.14927 CrossRefPubMedGoogle Scholar
  9. 9.
    Matziolis G, Krocker D, Weiss U, Tohtz S, Perka C (2007) A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Joint Surg Am 89:236–243. doi: 10.2106/JBJS.F.00386 CrossRefPubMedGoogle Scholar
  10. 10.
    Mizu-Uchi H, Matsuda S, Miura H, Higaki H, Okazaki K, Iwamoto Y (2009) Three-dimensional analysis of computed tomography-based navigation system for total knee arthroplasty: the accuracy of computed tomography-based navigation system. J Arthroplasty 24:1103–1110. doi: 10.1016/j.arth.2008.07.007 CrossRefPubMedGoogle Scholar
  11. 11.
    Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg Br 73:709–714PubMedGoogle Scholar
  12. 12.
    Klein GR, Parvizi J, Rapuri VR, Austin MS, Hozack WJ (2004) The effect of tibial polyethylene insert design on range of motion: evaluation of in vivo knee kinematics by a computerized navigation system during total knee arthroplasty. J Arthroplasty 19:986–991PubMedGoogle Scholar
  13. 13.
    Bach CM, Nogler M, Steingruber IE, Ogon M, Wimmer C, Göbel G, Krismer M (2002) Scoring systems in total knee arthroplasty. Clin Orthop Relat Res 399:184–196CrossRefPubMedGoogle Scholar
  14. 14.
    Whiteside LA, Arima J (1995) The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop Relat Res 321:168–172PubMedGoogle Scholar
  15. 15.
    Stiehl JB, Cherveny PM (1996) Femoral rotational alignment using the tibial shaft axis in total knee arthroplasty. Clin Orthop Relat Res 331:47–55CrossRefPubMedGoogle Scholar
  16. 16.
    Hananouchi T, Nakamura N, Kakimoto A, Yohsikawa H, Sugano N (2008) CT-based planning of a single-radius femoral component in total knee arthroplasty using the ROBODOC system. Comput Aided Surg 13:23–29. doi: 10.1080/10929080701882580 CrossRefPubMedGoogle Scholar
  17. 17.
    Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47PubMedGoogle Scholar
  18. 18.
    Song SJ, Jeong BO (2010) Three-dimensional analysis of the intramedullary canal axis of tibia: clinical relevance to tibia intramedullary nailing. Arch Orthop Trauma Surg 130:903–907. doi: 10.1007/s00402-009-0992-8 CrossRefPubMedGoogle Scholar
  19. 19.
    Tang Q, Zhou Y, Yang D, Xu H, Liu Q (2010) The offset of the tibial shaft from the tibial plateau in Chinese people. J Bone Joint Surg Am 92:1981–1987. doi: 10.2106/JBJS.I.00969 CrossRefPubMedGoogle Scholar
  20. 20.
    Nofrini L, Slomczykowski M, Iacono F, Marcacci M (2004) Evaluation of accuracy in ankle center location for tibial mechanical axis identification. J Invest Surg 17:23–29. doi: 10.1080/08941930490269619 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang YZ, Lu S, Chen B, Zhao JM, Liu R, Pei GX (2011) Application of computer-aided design osteotomy template for treatment of cubitus varus deformity in teenagers: A pilot study. J Shoulder Elbow Surg. doi: 10.1016/j.jse.2010.08.029 Google Scholar
  22. 22.
    Zhang YZ, Lu S, Yang Y, Xu YQ, Li YB, Pei GX (2011) Design and primary application of computer-assisted, patient-specific navigational templates in metal-on-metal hip resurfacing arthroplasty. The Journal of Arthroplasty 26:1083–1089. doi: 10.1016/j.arth.2010.08.004 CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang YZ, Chen B, Lu S, Yang Y, Zhao JM, Liu R, Li YB, Pei GX (2011) Preliminary application of computer-assisted patient-specific acetabular navigational template for total hip arthroplasty in adult single development dysplasia of the hip. Int J Med Robot Comput Assist Surg 4:469–474. doi: 10.1002/rcs.423 CrossRefGoogle Scholar
  24. 24.
    Hafez MA, Chelule KL, Seedhom BB, Sherman KP (2006) Computer-assisted total knee arthroplasty using patient-specific templating. Clin Orthop Relat Res 444:184–192. doi: 10.1097/01.blo.0000201148.06454.ef CrossRefPubMedGoogle Scholar
  25. 25.
    Gan Y, Xu D, Lu S, Ding J (2011) Novel patient-specific navigational template for total knee arthroplasty. Comput Aided Surg 16:288–297. doi: 10.3109/10929088.2011.621214 CrossRefPubMedGoogle Scholar
  26. 26.
    Mahaluxmivala J, Bankes MJ, Nicolai P, Aldam CH, Allen PW (2001) The effect of surgeon experience on component positioning in 673 press fit condylar posterior cruciate-sacrificing total knee arthroplasties. J Arthroplasty 16:635–640. doi: 10.1054/arth.2001.23569 CrossRefPubMedGoogle Scholar
  27. 27.
    Jenny JY, Clemens U, Kohler S, Kiefer H, Konermann W, Miehlke RK (2005) Consistency of implantation of a total knee arthroplasty with a non-image-based navigation system: a case-control study of 235 cases compared with 235 conventionally implanted prostheses. J Arthroplasty 20:832–839. doi: 10.1016/j.arth.2005.02.002 CrossRefPubMedGoogle Scholar
  28. 28.
    Burnett RS, Barrack RL (2013) Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review. Clin Orthop Relat Res 471:264–266. doi: 10.1007/s11999-012-2528-8 CrossRefPubMedGoogle Scholar
  29. 29.
    Garvin KL, Barrera A, Mahoney CR, Hartman CW, Haider H (2013) Total knee arthroplasty with a computer-navigated saw: a pilot study. Clin Orthop Relat Res 471:155–161. doi: 10.1007/s11999-012-2521-2 CrossRefPubMedGoogle Scholar
  30. 30.
    Chauhan SK, Clark GW, Lloyd S, Scott RG, Breidahl W, Sikorski JM (2004) Computer-assisted total knee replacement. A controlled cadaver study using a multi-parameter quantitative CT assessment of alignment (the Perth CT Protocol). J Bone Joint Sur Br 86:818–823. doi: 10.1302/0301-620X.86B6.15456 CrossRefGoogle Scholar
  31. 31.
    Sparmann M, Wolke B, Czupalla H, Banzer D, Zink A (2003) Positioning of total knee arthroplasty with and without navigation support. A prospective, randomised study. J Bone Joint Surg Br 85:830–835. doi: 10.1302/0301-620X.85B6.13722
  32. 32.
    Mihalko WM, Duquin T, Axelrod JR, Bayers-Thering M, Krackow KA (2006) Effect of one- and two pin reference anchoring systems on marker stability during total knee arthroplasty computer navigation. Comput Aided Surg 11:93–98. doi: 10.3109/10929080600668122
  33. 33.
    Kalairajah Y, Cossey AJ, Verrall GM, Ludbrook G, Spriggins AJ (2006) Are systemic emboli reduced in computer-assisted knee surgery? : A prospective, randomised, clinical trial. J Bone Joint Surg Br 88:198–202. doi: 10.1302/0301-620X.88B2.16906 CrossRefPubMedGoogle Scholar

Copyright information

© CARS 2016

Authors and Affiliations

  • Yuan Z. Zhang
    • 1
    Email author
  • Sheng Lu
    • 2
  • Hui Q. Zhang
    • 3
  • Zhong M. Jin
    • 4
  • Jian M. Zhao
    • 1
  • Jian Huang
    • 5
  • Zhi F. Zhang
    • 5
  1. 1.Department of OrthopaedicsThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople’s Republic of China
  2. 2.Department of OrthopaedicsKunming General Hospital, PLAKunmingPeople’s Republic of China
  3. 3.Department of Special DiagnosisInner Mongolia Unit hospital of Chinese Armed Police ForceHohhotPeople’s Republic of China
  4. 4.School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  5. 5.Department of Joint surgeryThe Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotPeople’s Republic of China

Personalised recommendations